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5.4 De l’Hôpital’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Integrals 57

6.1 Antiderivatives and Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 The area under a curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Properties of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.6 Substitution Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3



4 CONTENTS

7 Applications of Integration 67

7.1 Areas between curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Cylindrical Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.5 Mean Value Theorem for Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Techniques of Integration 73

8.1 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Trigonometric integrals and trigonometric substitutions . . . . . . . . . . . . . . . . 75

8.3 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3.1 Q(x) is a product of linear factors with no repetitions . . . . . . . . . . . . . 79

8.3.2 Q(x) is a product of linear factors with repetitions . . . . . . . . . . . . . . . 80

8.3.3 Q(x) contains irreducible quadratic factors without repetitions . . . . . . . . 81

8.3.4 Q(x) contains irreducible quadratic factors with repetitions . . . . . . . . . . 82

8.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.4.1 Midpoint Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.4.2 Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.4.3 Cavalieri-Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.5 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.5.1 Improper integrals on infinite intervals . . . . . . . . . . . . . . . . . . . . . . 86

8.5.2 Finite non-closed improper integrals . . . . . . . . . . . . . . . . . . . . . . . 87

9 Arc Length, Areas, and Applications 89

9.0.1 Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.1 Area of Surface of Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10 Differential Equations 99

10.1 Some motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.1.1 Population growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.1.2 Motion of Spring: Hooke’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.1.3 General differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.2 Direction fields and Euler’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.3 Separable equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.4 Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11 Sequences, Series, and Power Series 109

11.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.2 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.3 Integral Test and Estimates of Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.4 Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.4.1 Limit Comparison Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.5 Alternating Series and Absolute Convergence . . . . . . . . . . . . . . . . . . . . . . 125



CONTENTS 5

11.6 The Ratio and Root Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.7 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.8 Power Series Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11.9 Taylor and Maclaurin Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12 Parametric Equations and Polar Coordinates 137

12.1 Curves and Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



6 CONTENTS



Chapter 1

Introduction

Calculus is the study of continuous and smooth variation of quantities related by well defined cor-

respondences. This entails the study of infinitesimal/local variations as well as long-distance/non-

local variations that regard infinitely large sets. Two examples are the notion of derivative, which

concerns the instantaneous variation of a function, and indefinite integrals, that evaluate the area

under a curve that extends from −∞ to ∞. Examples of applications of Calculus outside of pure

math can be found virtually in any branch of science and even outside of STEM courses.

Calculus can be traced back to the work of Newton and Leibniz in the theory of differentials,

whose main application at the time was the study of celestial mechanics, i.e. the study of the

motion of planets. In fact, Newton’s laws in physics (mechanics to be precise) are formulated

through notions that are studied in calculus. Further applications can be found for instance in

biology, where the mathematical models describing population growth use the notion of differentials

and are studied through methods due to calculus. In chemistry the study of reactions is done

through differential calculus as well. In mechanical engineering as well as electrical engineering,

calculus is used to design mechanical/electrical components in an optimal way. More recently,

artificial intelligence and machine learning have used optimization techniques from calculus to

have computers perform specific tasks. Computational medicine and bioinformatics, as field of

applications where artificial intelligence and machine learning are used on a daily basis strongly

depend as well on calculus.

These notes are based on the standard textbook [4] used for this course at Idaho State University.

More advanced topics can be found in textbooks for Mathematical Analysis such as [1–3].
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Chapter 2

Functions

A function is as a law that to any given element from a set (called domain), associates a single

element of a target set (called codomain). This means that a function consists of three bits of

information. Firstly, one needs to specify a domain (a set). Secondly, one needs to give a codomain

(another set). Lastly, a specific procedure that allows to pass from domain to codomain in a unique

way is needed. This procedure in practice consists of an equation. To indicate a function one uses

the symbol f : X −→ Y , where X and Y are domain and codomain (respectively), and f is the

law that allows to pass from X to Y . When X and Y are clear, one can omit them and simply

indicate a function as f , but it is important to recall that X and Y are implicitly considered. One

can imagine a function as a machine that takes an input and produces an output.

Example 2.0.1. LetX = R, Y = R and define f(x) = x2. This means that the function f : R −→ R
takes elements from R, maps them into R, and it does so by taking a number x and squaring it, i.e.

producing x2. We can also consider the function X = R+
0 , Y = R and define f(x) = x2, where now

the domain consists of all nonnegative numbers, rather than all numbers. While the two functions

perform the same procedure, they are different because their domains are different.

One common way of depicting (visualizing) functions is through their graph. The graph of

f : X −→ Y is the set of all pairs (x, y) where x is in X and y is in Y , such that f(x) = y. The

function f(x) = x2 is shown in Figure 2.1.

Figure 2.1: Plot of function f(x) = x2. The horizontal axis represents x while the vertical axis is

y.
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The vertical line test is a useful and intuitive way of determining whether a curve on the plane

corresponds to the graph of a function. Observe that since we need to have a unique correspondence

from domain to codomain, this means that for each element on the horizontal line, there is going

to be only on element along the vertical line passing through it. So, if the vertical line passing

through x intersects a curve more than once, it means that the graphs does not correspond to any

function!

An immportant notion regarding functions is the fact that they tend to increase or descrease.

Definition 2.0.2. A function is said to be increasing if whenever x1 < x2 we also have f(x1) <

f(x2). A function is said to be decreasing if whenever x1 < x2 we have f(x1) > f(x2).

A function can have an increasing behavior in cetrain parts of the domain, and a descreasing

behavior in other parts. Consider for instance the function f(x) = x2. Then this is decreasing in

(−∞, 0] and it is increasing in [0,∞). Look at the graph in Figure 2.1!

Operations on functions

There are a number of elementary operations that we can perform on functions f : R −→ R, which

are inhertied from the operations of R.

• Given two functions f and g, we can define their sum f+g by the rule (f+g)(x) = f(x)+g(x).

• We can define the difference as (f − g)(x) = f(x)− g(x).

• Product (f · g)(x) = f(x)g(x).

• Quotient (f/g)(x) = f(x)
g(x) ; here we need to be careful to consider the quotient only when

g(x) 6= 0 for all x.

Another fundamental operation that can be performed on functions is their composition. This

operation does not depend on the codomain and domain being R. More specifically, if f : X −→ Y

and g : Y −→ Z are two functions, we can define their composition (indicated by g ◦ f) by the rule

g ◦ f(x) = g(f(x)).

From this definition is apparent that we need the domain of g to be the same as the domain of

f , because we would not otherwise be able to apply g on the outpiut of f . In arrow notation, the

composition looks like

X
f−→ Y

g−→ Z.

Observe that writing g ◦ f has the order of f and g switched! In other words, we apply f first, but

we write it on the right. Be careful about this notational fact.

Inverse of a function

It can happen that a function satisfies the property that for any choice of y in Y , there exists a

unique element x in X such that f(x) = y. The graph of such a function satisfies also the horizontal
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test, which is the same as the vertical test, but where the roles of x and y are exchanged. In this

case, we can define the inverse function, denoted by the symbol f−1 : Y −→ X which satisfies the

following properties: f−1 ◦ f(x) = x and f ◦ f−1(y) = y.

The rationale for this definition is the following. If whenever I pick y in Y , there is a unique x

in X such that f(x) = y, then I can also define f−1(y) = x, which is simply the function undoing

f . But if I undo f , then I am simply not performing anything on x. So, applying f and f−1 gives

simply the function that takes x and returns x (quite a boring function). I could also start with

f−1, and do the same reasoning with the roles of f and f−1 inverted.

Observe that if f−1 is the inverse of f , then f is the inverse of f−1, i.e. (f−1)−1 = f .
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Chapter 3

Limits and derivatives

The notions of limit and derivative formalize the intuitive concept of infinitesimals. A typical

problem where this arises is found in mechanics (part of physics), where we want to compute the

velocity of an object. Velocity, is defined as the ratio of space and time, and it represents the space

that an object (e.g. a car) travels within a time frame. This is the reason why odomoters in cars

report a quantity in miles per hour (i.e. space per time). This is a ratio of space (miles) over time

(hours), and it is indicated as

v =
∆s

∆t
,

where s indicates space, and t indicates time. However, this quantity does not refer to a precise

instant, but rather to a whole time interval. What if we wanted to know the instantaneous velocity?

This is the velocity at a certain precise time, and not at an interval of time. This would mean that

∆t needs to become smaller and smaller. It needs to be infinitesimal! The issue we are facing here

is to be able to make sense of this “infinitesimal” meaning. The resulting object, denoted as ds
dt is

the notion of derivative, and it is defined through a limit.

This problem relates to the notion of tangent to a curve. Suppose we have two points P and Q

over the graph of a function (which is a curve in the plane). Then, consider the line through the

points P and Q. See Figure 3.1.

Now, if we let P move to Q and eventually let it overlap on Q, it follows that the line through

the two points will touch the graph only at the point P ≡ Q. This means that we have found the

tangent. Since the slope of the line through P and Q can be written as
yP−yQ
xP−xQ = ∆y

∆x , we find that

in this case the slope of the tangent is the “limit” dy
dx similarly to the case of instantaneous velocity.

We introduce now the notion of limit. We first do so through a wordy definition, and then give

a more symbolic definition that simplty restates the first one.

Definition 3.0.1. Let f(x) be a function and let a be an element of R such that there exists an

interval (b, c) around a which is contained in the domain of f . Then, we say that the limit of f at

a is L, and we write

lim
x→a

f(x) = L,

if we can make f(x) arbitrarily close to L upon taking x sufficiently close to a.

Two important things about the definition are the following. First, a itself does not necessarily

need to be in the domain of f , but only an interval around it needs to be. Second, the intuitive

13
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Figure 3.1: Two points on the graph of a function and a line through them

meaning of the definition is that as x gets close to a, then f(x) gets close to L. Here f does not

need to reach the value L, though. But rather, we can make the difference |f(x)−L| as small as we

want, upon choosing x close to a. We also write sometimes that f(x) −→ L as x −→ a, to denote

limits.

A more formal definition of limit is the following.

Definition 3.0.2. For every ε > 0 there exists a δ > 0 such that for all x ∈ (a− δ, a+ δ) and x 6= a

we have |f(x)− L| < ε.

There are some rules that are very helpful in computing limits. In particular, computing limits

of cetrain types of functions is relatively easy, as we can apply the substitution principle as described

below.

Here we assume that c is a constant, and that limx→a f(x) and limx→a g(x) exist. Then:

• limx→a f(x) + g(x) = limx→a f(x) + limx→a f(x).

• limx→a f(x)− g(x) = limx→a f(x)− limx→a f(x).

• limx→a cf(x) = c limx→a f(x).

• limx→a f(x)g(x) = limx→a f(x) limx→a g(x).

• limx→a
f(x)
g(x) = limx→a f(x)

limx→a f(x) under the extra assumption that limx→a g(x) 6= 0.

For polynomial functions, trigonometric functions, roots, exponentials, logarithms, and rational

functions, we further have that calculating limits as x goes to a point a of their domain is simply

computed by substitution of a instead of x.
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Example 3.0.3. Let us consider the function f(x) = x2−1
x+1 . We want to compute the limit of f as

x goes to 1. We have that 1 is in the domain of f , and therefore, to compute limx→1 f(x) we just

need to substitute 1 in place of x. This means

lim
x→1

x2 − 1

x+ 1
=

12 − 1

1 + 1
= 0/2 = 0.

However, for the function f(x) = x2−1
x−1 we cannot use the same approach, as x = 1 is a root of

the denominator, and we would be dividing by zero. We can however factorize the numerator and

simplify as

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x+ 1)(x− 1)

x− 1
= lim

x→1
x+ 1.

Now we have the limit of the function g(x) = x + 1, which we can compute following the rules

above (this is polynomial), and we get

lim
x→1

x2 − 1

x− 1
= lim

x→1
x+ 1 = 1 + 1 = 2.

The principle is that whenever substituting makes sense (i.e. no trivial denominators and similar

things) we can simply compute the limit by substitution. When this is not possible, we have to try

to reduce the problem to an equivalent formulation that allows us to use the substitution.

There are cases where as x approaches some number say a, the function does no stabilize towards

any number L, but instead keeps increasing (or decreasing) wihtout ever stopping. One example

of such behavior is quite well known to all of us, and it is the function f(x) = 1
|x| when we take

x closer and closer to zero. Observe that zero is not in the domain of f here, but nonetheless, we

can compute the limit, as this is not a requirement of the definition above. There is no L such that

f gets closer and closer to it as x gets closer and closer to 0. This happens because f increases

without any bound, so it passes the value of any L you fix. In this case, we say that f has a vertical

asymptote at x = 0, and we write

lim
x→0

f(x) =∞.

More generally, we have the following.

Definition 3.0.4. If when x gets closer and closer to a, the function f(x) becomes larger and

larger without any bounds, then we write

lim
x→a

f(x) =∞,

and say that f has a vertical asymptote. Similarly, if f decreases without bounds and becomes

more and more negative, we write

lim
x→a

f(x) = −∞.

In this situation we say that f has a vertical asymptote as well.

The same rules for computing the limit given above hold when the limits are infinite, with some

careful considerations.
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• First, if limx→a f(x) = ±∞ and limx→a g(x) = L (where L is finite), then we have

lim
x→a

f(x)± g(x) = lim
x→a

f(x)± lim
x→a

g(x) = lim
x→a

f(x) = ±∞.

Same thing holds exchanging the roles of f and g.

• If limx→a f(x) = ±∞ and limx→a g(x) = L 6= 0, then we have that limx→a f(x)g(x) = ±∞
where the sign is determined according to the rules. If limx→a f(x) = ∞ and L > 0 this is

+, if limx→a f(x) = ∞ and L < 0 it is −. If limx→a f(x) = −∞ and L > 0 this is −, if

limx→a f(x) = −∞ and L < 0 it is +.

Warning: If the limit of g is 0, there is not much you can say right away, and this needs to

be treated on a singular basis, as we will see in the examples.

Similar results hold when the role of f and g is exchanged.

• If limx→a f(x) = ±∞ and limx→a g(x) = L 6= 0. Then limx→a f(x)/g(x) = ±infty. The case

limx→a g(x) = 0 can have some sign oscillations so it needs more care. Also, we have that

limx→a g(x)/f(x) = 0 (here limx→a g(x) = 0 does not cause any problems).

Let us consider now several examples to show the whole discussion up to now.

Example 3.0.5. Find the limit

lim
x→0

√
x2 + 9− 3

x2
.

Of course, this limit cannot be evaluated directly by substitution, because the denominator becomes

zero, and the numerator is zero as well. This is called an indeterminate form of type 0
0 .

To solve the issue, multiply both numerator and denominator by
√
x2 + 9 + 3. We get

lim
x→0

√
x2 + 9− 3

x2
= lim

x→0

√
x2 + 9− 3

x2

√
x2 + 9 + 3√
x2 + 9 + 3

= lim
x→0

x2 + 9− 9

x2(
√
x2 + 9 + 3)

= lim
x→0

1√
x2 + 9 + 3

.

Now, we can compute this limit by substitution and we get

lim
x→0

√
x2 + 9− 3

x2
= 1/6

Example 3.0.6. Compute the limit as x −→ 3 of the function f(x) = 7x−3
x2−9

. Observe that the

denominator is problematic in the sense that it is a root of the polynomial at the denominator.

However, as x goes to 3, the numerator goes to 21 − 3 = 18. This means that the denominator

goes to zero, and the numerator is a finite number. In both cases, the sign is + around 3 (for the

denominator this is due to the presence of the square).

This means that we divide a number around 18 by smaller and smaller (positive) numbers. This

is the same situation as we have for the function f(x) = 1
|x| . The limit is therefore∞. This situation

is written intutitvely as 1
0 (this is not an actual division, but rather a way of easily indicating what

is going on).
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When defining the limit of a function, we have considered intervals around a point a where

points were coming both from the left and the right of it. However, we can consider only limits

where we consider points only on the right, or only from the left. These limits are indicated by the

symbols limx→a+ f(x) and limx→a− f(x), respectively.

We now consider the definition and evaluation of limit when x grows or decreases without any

bound. These limits consider the behavior of the function when x −→ ±∞, rather than when it

goes to a specific numerical value L. If f becomes arbitrarily close to a specific value as x keeps

increasing or decreasing, we say that this specific numerical value is its limit as x goes to ∞ or

−∞. We indicate such limits by the symbol

lim
x−→±∞

f(x) = L,

and in such situation we say that L is right/left horizontal asymptote.

It might also happen that as x goes to ±∞, the function f incfreases or decreases unboundedly.

In such situation we write

lim
x−→±∞

f(x) = ±∞.

Example 3.0.7. Consider the function f(x) = x3−3x2+2
x2+3x−7

. Then, we can write

f(x) =
x3(1− 3/x+ 2/x3)

x2(1 + 3/x− 7/x2)
= x

1− 3/x+ 2/x3

1 + 3/x− 7/x2
.

As x goes to ∞, the terms 3/x, 2/x3, 7/x2 all go to zero, so that the fraction tends to 1, but the

multiplying factor of x gives a limit of ∞.

3.1 The Squeeze Theorem

Theorem 3.1.1. If f(x) ≤ g(x) for all x near to a, then we have that

lim
x→a

f(x) ≤ lim
x→a

g(x).

In particular, if f(x) ≤ g(x) ≤ h(x) for all x near a, and limx→a f(x) = limx→a h(x), then

lim
x→a

f(x) = lim
x→a

g(x) = lim
x→a

h(x).

The Squeeze Theorem says that if we can find (at least around a) two functions having the

same limit, and bounding g(x) from above and below, then the limit of g(x) has to be the same as

the limit of these two functions. The reason why this happens is that once g(x) is trapped between

two functions going to the same place from two different sides (above and below), then g(x) cannot

go anywhere but where f(x) and h(x) go. In other words, g(x) is squeezed to the same limit as

well.

Example 3.1.2. Consider the function f(x) = x2 sin(x). We know that | sin(x)| ≤ 1, so sin(x) is

always between −1 and 1. This means that we can bound f(x) as

−x2 ≤ x2 sin(x) ≤ x2.

Since both −x2 and x2 go to zero, as x goes to 0, we find that

lim
x→0

f(x) = 0

as well, applying the Squeeze Theorem.
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3.2 Continuous functions

A function can satisfy certain regularity properties that make it simpler to deal with. In fact, one

of these properties was encountered in the computations of limits, where we have seen that some

functions are simple enough that to compute their limit to a point lying in its domain we can simply

plug in the value in the function. Such functions are said to be continuous. More specifically, we

have

Definition 3.2.1. A function f is said to be continuous at the number a in its domain, if

lim
x→a

f(x) = f(a).

Observe that if the limit as x goes to a of f does not exist, then f is discontinuous at a by

definition. So, there are two different ways a function can be discontinuous at a point a of its

domain. It can fail to have a limit at a, or it can have a limit which is not equal to f(x).

In the second case, when limx→a f(x) exists but it is different from f(a), we can make f

continuous at a by redefining f at a as f(a) = limx→a f(x). This basically fixes the issue and

makes it continuous at a. In the first case, i.e. when f does not have a limit, there is not much we

can do.

Definition 3.2.2. A function f is said to be continuous from the right at the number a in its

domain, if

lim
x→a+

f(x) = f(a).

A similar definition holds for limits on the left.

Definition 3.2.3. A function f is said to be continuous on the subset Z of its domain X if f is

continuous at each point of Z. If f is continuous over all the points of its domain, then f is simply

said to be continuous.

Putting together continuous functions produces continuous functions still.

Theorem 3.2.4. Let f and g be continuous functions. Then, the following hold

• f + g, f − g and cf are continuous (for any choice of a number c).

• fg is continuous.

• If g is not zero on its domain, f/g is continuous.

• If f and g are such that their composition makes sense, then g ◦ f is continuous.

Proposition 3.2.5. Polynomial functions, rational functions, root functions, trigoinometric func-

tions, exponential functions and logarithmic functions are all continuous over their domains.

Remark 3.2.6. Observe that the domain of polynomial and exponential functions is (−∞,∞).

Rational functions might have “punctures” where the denominator is zero, and they are therefore

not defined. Root functions might only be defined on the non-negative numbers, depending on the

root. logarithmic functions are defined on the (strictly) positive numbers.
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3.3 Intermediate Value Theorem (IVT)

We explore now a very useful property of continuous functions, which is stated in the Intermediate

Value Theorem (IVT).

Theorem 3.3.1. Suppose that f is a continuous function over the interval [a, b], and let N be any

number between f(a) and f(b), where f(a) 6= f(b). Then, there exists a number c with a < c < b

such that f(c) = N .

Remark 3.3.2. The meaning of the IVT is that continuous functions do not have jumps over

intervals. In fact, the theorem is saying that between f(a) and f(b), the function f attains every

point. In other words, it does not make a jumpt.

Example 3.3.3. A fundamental thing in the theorem is that f is continuous over the interval. So,

if f is not continuous, or f is continuous but we are not considering an interval, the result of the

IVT might not be true. For instance, consider the function defined by the law

f(x) =

{
0 if 0 ≤ x ≤ 1

1 if 2 ≤ x ≤ 3

Then f is continuous over its domain, but between f(0) = 0 and f(3) = 1 there is a gap. This is

due to the fact that we are not considering a single interval, but the union of two intervals.

Consider now the funtion f : [0, 2] −→ R

f(x) =

{
0 if 0 ≤ x ≤ 1

1 if 1 < x ≤ 2

This function too does not attain all elements between f(0) and f(2), and we are now considering

the interval [0, 2]. What went wrong this time is that f is not continuous.

Problem 3.3.4. Show what went wrong in the previous example by drawing the graph of the

functions.

A very useful application of the IVT in practice is to show that there exist solutions to certain

equations. Moreover, the IVT would also show an interval in which such solutions lie, therefore

giving a way of roughly approximating the solutions.

Example 3.3.5. Consider the equation 4x3 − 6x2 + 3x − 2 = 0, and show that a solution to it

exists. Estimate it.

Consider the function f(x) = 4x3−6x2 + 3x−2 which is continuous because it is a polynomial.

Consider x = 0 and evaluate f at it: f(0) = −2. Consider f(2) = 12. Then this means (by the

IVT) that f(x) attains all values between −2 and 12. But such values also include 0, which means

that f(x) = 0 for some point between x = 0 and x = 2. We can actually see that f(1) = −1, so that

we can repeat the previous reasoning with x = 1 and x = 2 and say that f(x) = 0 has a solution in

(1, 2). In fact, we can repeat this approach, and see that f(1.5) > 0. So, a solution exists between

x = 1 and x = 1.5. So proceeding, we can improve our guess for a solution of f(x) = 0 by taking

half of the interval, evaluating whether f is positive or negative at that value, and selecting the

interval that has extremes with opposite signs. We get better approximations each time that we

perform this procedure.
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3.4 Derivatives

We have seen, at the beginning of the section, that in order to compute the tangent to a function,

we need to get the two points lying on the graph of a function closer and closer. The notion of

closer and closer is formalized through the concept of limit, which we have extensively considered

in the previous part of the section.

We can state this definition as follows.

Definition 3.4.1. The slope of the tangent line to the curve y = f(x) at the point (a, f(a)) is

given (if it exists) by the value

m = lim
x→a

f(x)− f(a)

x− a
.

Also, we have seen that the velocity of a moving object was obtained as a fraction which we

wanted to evaluate with smaller and smaller time lapses. This is as well a limit, and we have

Definition 3.4.2. The instantaneous velocity v of a moving object is obtained as the limit (if it

exists) of the ratio

v = lim
∆t−→0

∆s

∆t
.

Both limits are a special case of the more general notion of derivative.

Definition 3.4.3. The derivative of a function f at a, where a is in its domain, is given by the

limit (if it exists)

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Equivalently (why?) this can be written as

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Example 3.4.4. Let us now use the definition to compute the derivative of f(x) = x2 − 3x at the

point x = 1. Using the the second fraction in the definition we have

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + h)2 − 3(1 + h)− (1− 3)

h

= lim
h→0

1 + h2 + 2h− 3− 3h+ 2

h

= lim
h→0

h2 − h
h

= lim
h→0

h− 1 = −1

We can try to obtain the derivative of a function on any point of its domain. If the derivative

exists, then we have a way of associating to this value a another value defined as f ′(a). This means

that the derivative is itself a function defined over the set of points such that f ′(a) exists finite (as

a limit). This function is indicated by f ′(x) and it simply indicates the derivative at the point a,

as we let a vary.
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The domain of f ′ is the set of numbers where f ′(a) exists, and this does not need to be the

same as the domain of f . It is in general at most the same as the domain of f (in case all points

are such that f ′ exists!).

Example 3.4.5. Consider the function f(x) =
√
x. We want to compute its derivative using the

definition, and we want to determine what the domain of f ′ is. At a generic point x, we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

√
x+ h−

√
x

h

= lim
h→0

√
x+ h−

√
x

h

√
x+ h+

√
x√

x+ h+
√
x

= lim
h→0

x+ h− x
h(
√
x+ h+

√
x)

= lim
h→0

h

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x

=
1

2
√
x
.

From the computation we also see that x = 0 is a point where the limit does not exist, and therefore

it is not in the domain of f ′(x). Therefore, we get f ′(x) = 1
2
√
x

with its domain being (0,∞).

Other notations to indicate the derivative function are df
dx , d

dxf(x) or Dxf(x).

There are cases where the derivative function is not defined, but the limit of Definition 3.4.3 is

not infinite (as in the previous example), but it does not exists still.

Example 3.4.6. Consider the function f(x) = |x|. To compute the derivative we have

f ′(x) = lim
h→0

|x+ h| − |x|
h

.

Now, recall that |x| = x whenever x ≥ 0, and |x| = −x whenever x < 0. So, we have to distinguish

the two cases where x ≥ 0 and where x < 0. For > 0 we have

f ′(x) = lim
h→0

|x+ h| − |x|
h

= lim
h→0

x+ h− x
h

= lim
h→0

1 = 1,

while for x < 0 we get

f ′(x) = lim
h→0

|x+ h| − |x|
h

= lim
h→0

−x− h+ x

h
= lim

h→0
−1 = −1,
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This means that the right and left limits at zero do not coincide, which also means that the limit

does not exist at zero. This implies that f(x) is not differentiable at x = 0. However, for x < 0

and x > 0 the right and left limits are the same and they exist (either −1 or 1, repsectively). This

means that f(x) is differentiable everywhere but at x = 0.

We want to show now that differentiability is a stronger condition than continuity. By this we

mean that a continuouus function is also continuous, although the opposite is not always true. In

other words, there exist functions that are continuous but not differentiable (two examples where

seen before!).

Theorem 3.4.7. If f is a differentiable function at x = a, then it is continuous at x = a as well.

Proof. We want to show that limx→a f(x) − f(a) = 0, which would imply that f(x) goes to f(a)

when x goes to a. We have

lim
x→a

f(x)− f(a) = lim
x→a

f(x)− f(a)

x− a
x− a

= lim
x→a

f(x)− f(a)

x− a
(x− a)

= f ′(a) · 0 = 0.

This shows that f(x) −→ f(a) as x goes to a, which means that f is continuous at a.



Chapter 4

Differentiation rules

We now obtain several useful rules of differentiation which allow us to compute derivatives directly

from a given function, without needing to use the definition each time that we want to obtain a

derivative.

4.1 Linear combinations and powers

We have the following useful resutl.

Proposition 4.1.1. Let f and g be differentiable functions, and let a and b be numbers. Then, the

function af + bg is differentiable, and its derivative is given by

d

dx
[af(x) + bg(x)] = a

df(x)

dx
+ b

dg(x)

dx
.

In other words, we compute the derivatives separately, and then combine them linearly.

Proposition 4.1.2. (Power Law) Let f(x) = xn for some real number n. Then, f(x) is differ-

entiable, and it has derivative

f ′(x) = nxn−1.

Proof. We prove the result only for the simpler case where n is a positive integer (like n = 0, 1, 2, . . .

etc). For a generic number a, we want to compute the limit

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

xn − an

x− a
.

Now, since xn − an = (x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1), we can rewrite our limit as

lim
x→a

xn − an

x− a
= lim

x→a

(x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

x− a
= lim

x→a
xn−1 + xn−2a+ · · ·+ xan−2 + an−1.

To compute the latter we can now simply insert a instead of x, obtaining

lim
x→a

xn − an

x− a
= lim

x→a
xn−1 + xn−2a+ · · ·+ xan−2 + an−1

= an−1 + an−1 + · · ·+ an−1 + an−1

= nan−1.

23
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4.2 Application: Derivatives of polynomials

We now use the result above to obtain a very simple way of computing the derivative of polynomials.

A polynomial is a function of type f(x) = anx
n + an−1x

n−2 + · · · + a1x + a0. So, in other words,

a polynomial is a function obtained by a linear combination of power functions. In fact, an, . . . , a0

are all numbers, and each term xn, . . . , x, 1 are all power functions. So, using the results above, to

compute the derivative of f(x) we can compute the derivatives of all the powers separately, and

then combine them together. Since the derivative of a power is simple to compute, we get a general

rule for the differentiation of a polynomial. With f(x) = anx
n + an−1x

n−2 + · · ·+ a1x+ a0 we have

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1.

Observe that all powers dicrease, when taking a derivative, and the last term a0 disappears.

Example 4.2.1. Compute the derivative of f(x) = 2x3 − x2 + 3x + 5. We apply the rule above.

Each term gets their power dicreased by one, and the power multiplies the coefficient. So, the term

2x3 becomes 6x2 and so on. We have:

f ′(x) = 3 · 2x3−1 − 2x2−1 + 3

= 6x2 − 2x+ 3.

Example 4.2.2. Let f(x) = x47 − 7x31 + 5x. Then, the derivative of f(x) is given by

f(x) = 47x46 − (7 · 31)x30 + 5 = 47x46 − 217x30 + 5.

4.3 Product and quotient rules

The product and quotient rules are formulas that allow to compute the derivatives of products and

quotients of functions that are differentiable.

Theorem 4.3.1. (Product Rule or Leibniz Rule) Let f(x) and g(x) be differentiable. Then,

the product function (fg)(x) = f(x)g(x) is differentiable as well. The following formula holds for

all x where f and g are differentiable

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x).

Proof. Let us consider a generic point x in the domain of f ′ and g′ (i.e. where they are differen-

tiable). We want to compute the derivative of the product. When x changes by h, f(x) varies by

∆f = f(x+ h)− f(x). Similarly for g we have ∆g = g(x+ h)− g(x). So, to compute the limit

d

dx
[f(x)g(x)] = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
,
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we can use the ∆f and ∆g above to get

d

dx
[f(x)g(x)] = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

(f(x) + ∆f)(g(x) + ∆g)− f(x)g(x)

h

= lim
h→0

f(x)∆g + ∆fg(x) + ∆f∆g

h

= lim
h→0

f(x)∆g

h
+ lim
h→0

∆fg(x)

h
+ lim
h→0

∆f∆g

h
.

The first limit gives us f(x)g′(x), while the second limit gives us f ′(x)g(x). We now just need to

show that the third limit is zero. Toward this, observe that the limit can be split in a product of

limits

lim
h→0

∆f∆g

h
= (lim

h→0
∆f)( lim

h→0

∆g

h
).

In the latter, limh→0
∆g
h = g′(x) by definition, while limh→0 ∆f = 0 by continuity of f (being

differentiable f is also continuous). Therefore, the whole limit limh→0
∆f∆g
h is zero, and we are

done.

A similar procedure shows the Quotient rule.

Theorem 4.3.2. (Quotient Rule)

Let f and g be differentiable and assume that g is nonzero. Then the quotient is differentiable

as well. The following formula holds wherever f and g are differentiable.

d

dx
[
f(x)

g(x)
] =

f ′(x)g(x)− f(x)g′(x)

g(x)2
.

Let us now consider some applications of these facts.

Example 4.3.3. Suppose we want to compute the derivative of the function h(x) = (x2−3)(2x+1).

Then, since we know how to differentiate x2 − 3 and 2x+ 1, we can use the product rule to obtain

the derivative of h. Here we set f(x) = x2 − 3 and g(x) = 2x+ 1 in the product rule. We have

h′(x) = (
d

dx
(x2 − 3))(2x+ 1) + (x2 − 3)(

d

dx
(2x+ 1))

= 2x(2x+ 1) + (x2 − 3)2,

where in the last step we have used the rule to differentiate polynomials.

Example 4.3.4. Consider the function f(x) = x3−3x+1
x2+1

. We can compute the derivative of this

function by using the quotient rule. Observe that the domain of the function is (−∞,∞) (why?).
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Now, we apply the quotient rule to get

d

dx
(f(x)) =

d

dx
(
x3 − 3x+ 1

x2 + 1
)

=
( d
dx(x3 − 3x+ 1)) · (x2 + 1)− (x3 − 3x+ 1) · ( d

dx(x2 + 1))

(x2 + 1)2

=
(3x2 − 3)(x2 + 1)− (x3 − 3x+ 1)2x

(x2 + 1)2

=
3x4 − 3x2 + 3x2 − 3− 2x4 + 6x2 − 2x

(x2 + 1)2

=
x4 + 6x2 − 2x− 3

(x2 + 1)2
.

4.4 Derivatives of trigonometric functions

We compute now the derivative of the function f(x) = sin(x). From the definition of derivative,

we need to evaluate the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

sin(x+ h)− sin(x)

h
.

Before evaluating the limit, recall the summation formula for sin: sin(x + h) = sin(x) cos(h) +

sin(h) cos(x). Now, let us use this to compute the limit above.

f ′(x) = lim
h→0

sin(x+ h)− sin(x)

h

= lim
h→0

sin(x) cos(h) + sin(h) cos(x)− sin(x)

h

= lim
h→0

[
sin(x) cos(h)− sin(x)

h
+

cos(x) sin(h)

h
]

= lim
h→0

sin(x) cos(h)− sin(x)

h
+ lim
h→0

cos(x) sin(h)

h

= lim
h→0

sin(x)
cos(h)− 1

h
+ lim
h→0

cos(x)
sin(h)

h

= sin(x) lim
h→0

cos(h)− 1

h
+ cos(x) lim

h→0

sin(h)

h
,

where at the last step, we have moved sin(x) and cos(x) out of the limit because they do not depend

on h (the limit is with respect to h!), and they are therefore constant as we let h go to zero. We

are therefore left with the issue of evaluating the limits limh→0
cos(h)−1

h and limh→0
sin(h)
h . We have

the following result

Proposition 4.4.1. The following equalities hold

• limθ→0
cos(θ)−1

θ = 0,

• limθ→0
sin(θ)
θ = 1.
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Figure 4.1: Figure showing the inequalities cos(θ) < sin(θ)
θ < 1

Proof. We prove only the second limit, as the first can be obtained by a straightforward computation

which involves multiplying by the cos(h)+1
cos(h)+1 , and then utilizes the result from the second limit.

Suppose that 0 < θ < π/2. In the other cases one can proceed analogously by manipulating

Figure 4.1. In fact, from the figure we see that BC = sin(θ) < AB = θ, recalling the definition of

arc and angle, and sin from trigonometry. From the previous inequality it follows that

sin(θ)

θ
< 1.

Moreover, AD = tan(θ) again by the definitions in trigonometry. Therefore, it also holds that

AB = θ < tan(θ) = AD. But, tan(θ) = sin(θ)
cos(θ) , and therefore θ < tan(θ) = sin(θ)

cos(θ) . From θ < sin(θ)
cos(θ)

we obtain cos(θ) < sin(θ)
θ . So, we have the two inequalities

cos(θ) <
sin(θ)

θ
< 1.

By the Squeeze Theorem we can take the limits of cos(θ) and 1 to obtain the limit of sin(θ)
θ . Since

lim
θ→0

cos(θ) = lim
θ→0

1 = 1,

it follows that limθ→0
sin(θ)
θ = 1.

4.5 Chain rule

The chain rule is a differentiation rule that applies to the cases where we want to obtain the

derivative of a function that is the composite of two smaller functions. Here the main thing is to

individuate a way of decomposing a function into pieces that we know how to differentiate.

Example 4.5.1. Consider the function h(x) =
√
x2 + 1. Suppose that I wanted to compute the

output of h evaluated at the point x = 0, using a calculator. In this case, I should first take x = 0

and square it, and sum 1. In other words, the first thing to do is 02 + 1. Once I get my result, then

I can simply take it and use the square root to get
√

02 + 1.
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The fact that our way of computing the output of h consists of applying two procedures, first

x2+1 and then using
√

, indicates that f is a composite function. Where we first have g(x) = x2+1,

and then f(x) =
√
x. In fact, by definition of composite f(g(x)), we have that

f(g(x)) = f(x2 + 1) =
√
x2 + 1.

The function g is called inner function, and the function f is called outer function. The chain rule

gives us a way of computing the derivative of h, from the derivatives of g and f .

Theorem 4.5.2. (Chain Rule) Let f and g be differentiable functions, and let h(x) = f(g(x))

be a composite function. Then, the derivative of h is obtained through the rule

d

dx
(h(x)) = f ′(g(x))g′(x),

where f ′(g(x)) is the derivative of the outer function, evaluated at g(x).

Example 4.5.3. We now go back to the example of h(x) =
√
x2 + 1, and we compute the derivative.

We already know how to decompose h into an inner and an outer function. We have found that

f(x) =
√
x is the outer function, and g(x) = x2 + 1 is the inner function. Now, let us take the

derivative of f and g separately. We have

f ′(x) =
d

dx
(
√
x) =

1

2
√
x
,

and also

g′(x) =
d

dx
(x2 + 1) = 2x.

Now we can apply the chain rule by evaluating f ′(x) = 1
2
√
x

at g(x) = x2 + 1 (i.e. replacing x with

g(x)!) and then multiplying it all by g′(x) = 2x. We have

h′(x) = f ′(g(x))g′(x)

=
1

2
√
x2 + 1

2x

=
x√

x2 + 1
.

We now prove the chain rule.

Proof. (Chain rule)

Recall that one of the way to define the derivative is that lim∆x→0
∆y
∆x = f ′(x), where ∆y

represents the variation of the function corresponding to the variation of the argument ∆x. We

used this definition to obtain the instantaneous velocity of a moving object. If the derivative exists,

then we have that

lim
∆x→0

∆y

∆x
− f ′(x) = 0. (4.1)

So, we can define a small quantity ε such that ε = ∆y
∆x − f

′(x), and ε→ 0 as ∆x→ 0. So,

∆y = f ′(x)∆x+ ε∆x. (4.2)

This equation holds for any x where f is differentiable.
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Consider now a composite function y(x) = f(g(x)). We call u = g(x) the input of f . So, we

have y = f(u). We consider the derivative of the composite at x = a, and set b = g(a). If we have

a variation in x, which we denote by ∆x, then g(x) varies by a quantity that we denote by ∆u

(since we put u = g(x)). But if u varies, then the argument of f is varying, which means that f

varies as well. We call this variation ∆y. Then, using Equation (4.2) applied to g(x) and f(u), we

can write

∆u = g′(a)∆x+ ε1∆x, (4.3)

and

∆y = f ′(b)∆x+ ε2∆x. (4.4)

Substituting Equation (4.3) into Equation (4.4), we obtain

∆y = (f ′(b) + ε2)(g′(a) + ε1)∆x.

Therefore, dividing boths sides by ∆x we find

∆y

∆x
= (f ′(b) + ε2)(g′(a) + ε1).

Taking the limit as ∆x goes to zero, both ε1 and ε2 go to zero, as in Equation (4.2). Therefore we

find
dy

dx
= f ′(b)g′(a).

Since b = g(a) by assumption above, we have completed the proof of the chain rule.

4.6 Derivatives of Exponentials and Logarithms

We give now some rules of differentiation without proof.

• d
dx(ex) = ex.

• d
dx(ln(x)) = 1

x .

• d
dx(bx) = bx ln(b).

• d
dx(logb(x)) = 1

x ln(b) .

Example 4.6.1. We want to compute the derivative of the function h(x) = esin(x). The function

h is a composite function obtained by composing the sine function and the exponential function.

We can therefore write f(x) = ex and g(x) = sin(x), with h(x) = f(g(x)). The derivative of f(x) is

ex, as seen above. The derivative of g(x) is cos(x) as we have showed before. So, we have to apply

the chain rule. We have

d

dx
(esin(x)) = esin(x) d

dx
(sin(x)) = esin(x) cos(x).
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Figure 4.2: Plot of the curve x2 + y2 = 3.

4.7 Implicit Differentiation

Implicit functions arise when we have relations between x and y that are not simply written in the

form of a function as y = f(x), which is what we have been considering so far. These equations

arise when we have relations of type

x2 + y2 = 3 (4.5)

x3 + y3 = 6xy. (4.6)

These are curves in the plane, and explicitly writing y as a function of x is not simple. Equation (4.5)

is shown in Figure 4.2. This is obviously not a function (it fails the vertical line test!). However,

we can isolate two components (the red and the blue ones) where the curve does indeed define a

function. So, while globally we do not have a function, we locally (on some parts of the curve have

a well defined function).

Our scope is to understand how to differentiate functions that arise in this way. We assume,

here, that around a chosen point of the curve we are able to explicitly write y as a function of x.

This is in general very difficult to do. For instance, while for Equation (4.5) we can find two curves,

y1 =
√

3− x2 (the blue on top) and y2 = −
√

3− x2 (the red below), for the curve in Equation (4.6)

(the folium of Descartes), this is quite complicated.

However, we can proceed using a trick as discussed below. Here we assume that around a point

of interest, we can indeed write our y variable as a function of x.

Example 4.7.1. We want to compute the derivative of y as a function of x at the point (1,
√

2).

First, differentiate the whole equation with respect to x, assuming that around our point y is

expressible as a function of x. We have

d

dx
(x2 + y2) =

d

dx
(3),

where the right hand side is zero (the derivative of a constant!), and the left hand side is the

derivative of the function f(x) = x2, which we know gives 2x, and the derivative of the function
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y(x)2. Now, y(x)2 is a composite function obtained by composing y(x) and using the power (by 2)

function. Therefore, d
dx(y2) = 2y · dydx by the chain rule. We have found:

2x+ 2y
dy

dx
= 0.

Now, we can explicitly write the derivative dy
dx as

dy

dx
= −2x

2y
= −x/y.

Substituting the values x = 1 and y =
√

2 of our point, we find the derivative of y evaluated at the

point (1,
√

2).

Example 4.7.2. We want to compute the derivative of y for the folium of Descartes x3 +y3 = 6xy.

Also, we want to use this result to get the tangent to the folium of Descartes at the point P ≡ (3, 3).

We differentiate both sides of the equation x3 + y3 = 6xy with respect to x, considering y as a

function of x. We get

3x2 + 3y2 · y′ = 6y + 6xy′,

where we have used the chain rule for y3, and the Leibniz rule (product rule) for 6xy. Therefore,

dividing the previous equation by 3, we have

x2 + y2 · y′ = 2y + 2xy′,

and we can explicitly write for y′:

(y2 − 2x)y′ = 2y − x2,

which gives

y′ =
2y − x2

y2 − 2x
.

To know the tangent line at P , we can substitute the coordinates of P into the equation of y′ to

obtain the slope of the tangent. We get

y′ = −1.

To write the equation of the line, recall that the tangent has an equation of type y = mx+q, where

m is the slope, which we have just found to be m = y′ = −1. To obtain q, substitute the values of

P inside y = −x+ q and get q = 6. So, the equation of the tangent line is y = −x+ 6.

Logarithmic Differentiation

We want to differentiate the function y = x3
√
x2+1

(3x2+2)5
.

We take the logarithm of both sides of the equation:

ln(y) = ln(
x3
√
x2 + 1

(3x2 + 2)5
).

Using the properties of logarithms, the RHS becomes quite simple, and we get

ln(y) = 3 ln(x) +
1

2
ln(x2 + 1)− 5 ln(3x2 + 2).
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We now use implicit differentiation (and the rule of differentiation of logarithms) to get

y′

y
=

3

x
+

1

2

2x

x2 + 1
− 5

6x

3x2 + 2
.

This means that

y′ = y[
3

x
+

x

x2 + 1
− 5

6x

3x2 + 2
].

Substituting the value of y = x3
√
x2+1

(3x2+2)5
back in the previous equation, we get the derivative of y:

y′ =
x3
√
x2 + 1

(3x2 + 2)5
[
3

x
+

x

x2 + 1
− 5

6x

3x2 + 2
].

4.8 Applications of Derivatives

Example 4.8.1. We consider now an application of differentiation to chemical reactions. Namely,

we consider how to determine the variations of substances in a chemical reaction. Chemical reactions

generally have reactants that very over time and the dynamics of such variation is of great interest

in chemistry. We will see that such a situation can be studied with the tools we have learned so

far.

The reaction obtained by burning propane is given by

C3H8 + 5 ·O2 −→ 3 · CO2 + 4 ·H2O + Heat.

All the quantities in the chemical equation vary with respect to time, during the reaction. In such a

situation, chemists are interested in finding the rate of reaction, wich is the instantaneous variation

of some of the reactants in the chemical equation.

For instance, suppose we want to know the rate of reaction of the propane C3H8 in the chemical

equation above. Then, we need to compute the derivative

d

dt
(C3H8) =?

Since the amount of propane decreases during the reaction, the derivative will be negative. Similarly,

the oxygen will have negative derviative. On the other hand, quantitites on the RHS of the chemical

reaction will increase, and their derivative will be positive.

Each time 3 moelucles of CO2 and 4 molecules of H2O are produced, one molecule of propane

and 5 molecules of O2 are consumed. This means that the rates will be related by the equations

− d

dt
(C3H8) = −1

5

d

dt
O2 =

1

3

d

dt
CO2 =

1

4

d

dt
H2O.

Therefore, if we can measure the variation of one of the quantities, we can obtain the derivatives

of the reactants.

Example 4.8.2. Radioactive substances spontaneously decay by emitting radiation. This process

happens with a certain probability which depends on the substance considered. The probability of

a mass of substance m emitting radiation depends in a directly proportional manner also on the
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amount of substance, i.e. how large m is. This is because the larger m, the higher the number of

radioactive atoms are present, and therefore the higher the probability of radioactive emission.

Experimentally, it has been found that the probability of decay is constant with respect to time.

Let us call this constant k. If m(t) indicates the mass of the radioactive substance at time t, since

the probability of emitting radiation at time tt is proportional to m(t) (by k), it follows that the

variation of m(t) is directly proportional to m as well, because if atoms that emit radiation get

transformed, and will not be counted in m(t) anymore.

Therefore, we have that
dm(t)

dt
= −km(t),

where the negative sign is due to the fact that the radioactive substance discreases.

We have to find a function m(t) such that its derivative is proporitonal to m(t) by a factor of

−k. We know that the exponential function has this property! In fact, we can simply see that

setting

m(t) = Ae−kt,

we find that the required property is satisfied, where A is just a constant. Taking time t = 0 we

see that m(0) = Ae0, which shows that A = m(0) is just the initial mass of the substance.

To summarize, given a certain amount of radioactive substance m0 at time t = 0, we can

compute how much radioactive substance is left at a subsequent time, say t = 1hr by using the

function m(t) = m0e
−kt, upon knowing the radioactive decay constant k, which is determined

experimentally.

Example 4.8.3. We consider now an example from biology.

Denote by n = f(t) the number of individuals in a population (e.g. number of predators in

some environmnet). Suppose that the population f(t) changes according to some law f(t) = n02t,

where n0 is the initial population at time t = 0. Such a law roughly relates the growth of bacteria

in some nutrient medium.

Now, let us say that we want to understand the variation of the population at time t = 10, i.e.

after 10 hours. In order to do that, we need to compute the instantaneous variation of n = f(t)

with respect to time, and evaluate it at time t = 10. We know that

f ′(t) =
d

dt
(n02t) = n02t · ln(2).

Evaluating at time t = 10, we obtain the variation after 10 hours, which is given by n0210 ln(2). So,

starting with around n0 = 10 bacteria, after 10 hours we will have a growth rate of around ≈ 7000.

Example 4.8.4. Assume that the trajectory of a particle is given by the equation:

s = f(t) = t3 − 6t2 + 9t,

where t indicates time, and s indicates the position (along one dimension, e.g. a distance), where

time is given in seconds and space is given in meters. Determine the following:

1. Velocity of the particle as a function of time.

2. Acceleration of the particle as a function of time.
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3. Velocity at time t = 2 sec and t = 4 sec.

4. Acceleration at time t = 2 sec and t = 4 sec.

5. When the particle is moving forward, and when the particle is at rest.

6. The total distance traveled by the particle in the first 5 seconds.

1. To find the velocity, we need to compute the derivative of s. This means that

v(t) = s′(t) = 3t2 − 12t+ 9.

2. To find acceleration, we need to take the second derivative. In other words, we have to

differentiate again the first derivative. We get

a(t) = s′′(t) = 6t− 12.

3. To obtain the velocity at time t = 2, we plug t = 2 in the expression for the velocity. We get

v(2) = −3
m

s
.

Similarly, at 4 seconds we get

v(4) = 9
m

s
.

4. To obtain the acceleration at t = 2 and t = 4, as before, we need to plug in the acceleration

function. We have

a(2) = 0
m

s
, a(4) = 12

m

s
.

5. To detemine when the particle is moving forward, we have to find when the particle has

positive velocity. To achieve this, we have to determine the sign of v(t) = 3t2 − 12t + 9. Observe

that v(t) = 3(t − 1)(t − 3). Therefore, its sign is determine by when the product (t − 1)(t − 3)

is positive, and when it is negative. A product is positive only when both signs of the terms

are agreeing (either both positive, or both negative). When x ≤ 1, both signs are negative, and

therefore v(t) ≥ 0. When 1 < t < 3, the signs do not agree, since (t − 1) is positive and (t − 3) is

negative, so v(t) < 0. When t ≥ 3, finally, the terms are both positive, and therefore v(t) ≥ 0. So,

to summarize, the particle moves forward between 0 to 1 seconds, and then again from 3 seconds

on. Morevoer, we know that v(t) = 0 for t = 1 and t = 3, so that at those times it is at rest.

6. To determine the total distance traveled, we need to consider that (from part 5.) the particle

goes forward until t = 1, it goes back again between t = 1 and t = 3, and it moves forward again.

Therefore, we have to sum the distance traveled during each portion of the trajectory separately.

We |f(1)− f(0)| = 4m. Then |f(1)− f(3)| = 4m, and lastly |f(5)− f(3)| = 20m.

Example 4.8.5. Consider the flow of blood in a blood vessel. We assume that the blood vessel is

approximated as a long cylinder with length l and radius R. In general, l is much bigger than R.

The velocity of the blood flow is depends on how close to the central axis of the vessel we are, due

to friction between the blood and the vessel. The velocity is described by the Law of laminar flow,

given by

v =
P

4ηl
(R2 − r2),
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where r is the distance between a point and the central axis, P is the pressure and η is the viscosity

of blood. Therefore, the velocity is a function of r, assuming that P and η are simply constants.

The gradient of velocity as a function of the distance from the central axis is given by

dv

dr
= − P

2ηl
r,

and it is simply the derivative of the function v with respect to r.

In a human artery we can take η = 0.0027, R = 0.008 cm, l = 2 cm, and P = 4000 dynes/cm2.

So, we get at r = 0.002 cm a value for the velocity of v(0.002) = 1.11 cm/sec, and the velocity

gradient at that point is of about v′(0.002) = −74 (cm/sec)/cm.

Example 4.8.6. Newtpon’s law of cooling states that the temperature variation (in time) of an

object at temperature T in an environment with temperature Ts, is given by

dT

dt
= k(T − Ts),

where k is a constant that is typical of the material of the object.

Suppose we know that a bottle of iced tea at room temperature (21 ◦C) is placed in a refrigerator

with temperature of 5 ◦C, and reaches the temperature of 15 ◦C after 30 minutes. What will the

temperature be after 30 more minutes?
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Chapter 5

Main results on derivatives with

applications

5.1 Maxima and minima

In practice, we are interested in several cases to understand the maximum and minimum value that

certain quantities can attain. We will see that caclulus gives us several tools that can be used to

obtain this information.

First, we define what maximum and minimum values mean.

Definition 5.1.1. Let c be a number in the domain D of f such that either of the following

statements hold:

• f(c) ≥ f(x) for all x in D.

• f(c) ≤ f(x) for all x in D.

Then, in the first case we say that f(c) is a global maximum for f , and in the second case we say

that f(c) is a global minimum for f . We sometimes also say that they are absolute maxima and

minima, or simply extreme values.

We also have the following definition.

Definition 5.1.2. Let c be a point of the domain D of f . Assume that there exist an interval [a, b]

containing c such that either of the following holds:

• f(c) ≥ f(x) for all x in [a, b].

• f(c) ≤ f(x) for all x in [a, b].

Them, in the first case we say that f(c) is a local maximum, and in the second case we say that

f(c) is a local minimum. The meaning of this definition is that f(x) is smaller (or larger) than f(c)

when we take x close to c.

Remark 5.1.3. A global maximum or minimum value is always also a local maximum or minimum

value. The converse is not true. This is quite general: Global properties are also true locally, but

37
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Figure 5.1: Plot of function f(x) = x2. The minimum is found at x = 0.

Figure 5.2: Plot of a polynomial function that has local maximum and local minimum, but not

global.

local properties are not true globally. For instance, if I own the tallest building in town, it does not

mean that I own the tallest building on earth. However, if I happen to own the tallest building in

the world, for sure I own also the tallest building in town.

Example 5.1.4. The function f(x) = x2 has a global minimum at x = 0, as it is clear from the

graph of it. However, this function does not have maxima (why?).

Example 5.1.5. The function f(x) = sin(x) has infinitely many global maxima and minima. They

are those angles such that sin(x) = 1 and sin(x) = −1, respectively. They repeat periodically, as it

is found in precalculus courses.

Example 5.1.6. Take the polynomial function f(x) = 3x4 − 16x3 + 18x2. Then, as shown in

the graph of it, this function has a local minimum, a local maximum, but not global maxima and

minima.

We have now the following very imporant result, which we state without proof.

Extreme value theorem.

Theorem 5.1.7. If f is a continuous function defined over the closed interval [a, b], then f has a

global maximum and a global minimum.
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We will refer to this theorem as the Extreme Value Theorem, or EVT for short.

Now, the question that arises is whether there are more efficient methods to find extreme values,

rather than graphing the function and guessing. We develop now the tools necessary to achieve

this.

Theorem 5.1.8. If f has a local maximum or minimum at c, and f ′(c) exists, then we have

f ′(x) = 0.

Proof. We will prove the statement for the case when f(c) is a local maximum. The proof for the

other case is substantially the same, and it is left to the reader as an exercise. From the definition

of local maximum, we know that around c, f(c) ≥ f(x). Around c here means that in some

interval [a, b] containing c (and contained in the domain of f), we have this property. Therefore, in

particular, when considering elements x close enough to c we have the inquality

f(c+ h)− f(c)

h
≥ 0

whenerver h ≥ 0 and c+ h is in [a, b] (i.e. h is small enough). Similarly, for h < 0 such that c+ h

is in [a, b], we have also Therefore, in particular, when considering elements x close enough to c we

have the inquality

f(c+ h)− f(c)

h
≤ 0.

Upont letting h go to zero from the right and the left (respectively), the previous inequalities give

us that

lim
x→0+

f(c+ h)− f(c)

h
≥ 0,

and

lim
x→0−

f(c+ h)− f(c)

h
≤ 0.

Since f is differentiable at c, the right and left limits must coincide, and therefore

lim
x→0

f(c+ h)− f(c)

h
= 0.

This means that f ′(c) = 0, which is what we wanted to prove.

The previous theorem, which is due to Fermat, has a very natural geometric interpretation. In

fact, f ′(c) = 0 means that the tangent line is horizontal. But this is intuitively clear, since where

f attains a maximum or minimum the tangent line cannot be skew, provided that it exists!

The following example shows that if f ′(c) = 0, it is not generally true that the point c corre-

sponds to a maximum or minimum.

Example 5.1.9. Let f(x) = x3. The graph of this function looks like
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We know that f ′(x) = 3x2 has a zero at x = 0. So that f ′(0) = 0. However, it is clear that f(0) is

not an extreme value.

The following example shows that a continuous function f can attain its extreme value without

the derivative being zero, when it is not differentiable at a point.

Example 5.1.10. Consider the function f(x) = |x|. Then, the graph looks like:

It is clear that x = 0 is a minimum for f(x). However, we know that this function is not differentiable

at zero, and therefore f ′(0) does not exist, which in particular means that it is not equal to zero.

Definition 5.1.11. A critical number (or critical point) for a funtion f is a number c in the domain

of f where one of the two possibilities occurs:

• f ′(c) exists, and f ′(c) = 0.

• f ′(c) does not exist.

These results give us a procedure to obtain maxima and minima for continuous functions on a

closed interval.

Method 5.1.12 (Closed Interval Method). Let f(x) be a continuous function defined over the

interval [a, b]. Then, to obtain the maxima and minima of f , we perform the following procedures.

• Find the critical numbers of f in (a, b).

• Find the values of f at the endpoints a and b.

• Compare all the values obtained in the previous two steps. The largest of them all will be the

global maximum, and the smallest of them all will be the global minimum.
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Example 5.1.13. Let f(x) = x3− 2x2 + 7 be defined on [−2, 2]. We want to find the maxium and

minimum of this function. Since it is continuous, we can use the Closed Interval Method. We first

need to find the critical numbers of f in the interval [−2, 2]. Compute f ′(x):

f ′(x) = 3x2 − 4x.

Now, we need to solve the equation f ′(x) = 0, which means 3x2 − 4x = 0. We have

f ′(x) = x(3x− 4) = 0

gives solutions x = 0 and x = 4/3. So, now we compute the function f on the points −2, 2, 0 and

4/3. We get

• f(−2) = −8− 8 + 7 = −9.

• f(0) = 7.

• f(4/3) = 64/27− 2 · 16/9 + 7 ≈ 5.814.

• f(2) = 8− 8 + 7 = 7.

Therefore, we have found that f(−2) is the global minimum, and that f(0) and f(2) are both global

maxima.

5.2 The Mean Value Theorem

We now obtain several important applications of differentiation, including the celebrated Mean

Value Theorem (MVT). Before proving the MVT, we introduce and show Rolle’s Teheorem.

Theorem 5.2.1 (Rolle). Let f be a function that satisfies:

1. f is continuous on [a, b].

2. f is differentiable on (a, b).

3. f(a) = f(b).

Then, there exists a number c in (a, b) such that f ′(c) = 0.

Proof. We have to distinguish some cases. First, consider the case where f(x) = k is a constant.

Then, of course the derivative of f(x) is zero in the whole interval and a c as in the statement

surely exists.

Suppose now that there exists at least a value x in (a, b) such that f(x) 6= f(a) (or we would

be in the previous case). Let us consider now two subcases of this situation. Suppose first that

f(x) > 0 for some number in (a, b). Applying the Extreme Value Theorem (i.e. Theorem 5.1.7) we

find that f attains its maximum in [a, b]. Since f(x) > f(a) = f(b) at some point, the maximum

cannot be reached at a or b. Therefore, this point which we call c lies in (a, b). By Fermat’s Theorem

(Theorem 5.1) f ′(c) = 0. Similarly, if f(x) < f(a) in some point in (a, b), then by considering the

minimum, Theorem 5.1.7 and Theorem 5.1.7, we find that f ′(c) = 0 again. This completes the

proof.
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Example 5.2.2. Show that the equation x3 + x− 1 = 0 has exactly one solution.

First, we want to show that at least one solution exists. Set f(x) = x3 + x− 1. We apply the

Intermediate Value Theorem to 0 and 1. In fact, f(0) = −1 < 0 and f(1) = 1 > 0. So, there exists

at least one solution. Now we need to show that it is unique.

Suppose that there exist two solutions, which we call x = a and x = b. Then, we have

f(a) = f(b) = 0. Since all the hypotheses of Rolle’s Thoerem are satisfied in [a, b], we have that

there exists a point c in (a, b) such that f ′(c) = 0. But f ′(x) = 3x2 + 1 > 0, so it is never going

to be zero. We have found a contradiction, which means that our assumption that two solutions

could exist was wrong. There cannot be two distinct solutions.

We now state and prove the Mean Value Theorem, also known as Lagrange Theorem in honor

of Lagrange.

Theorem 5.2.3 (MVT). Let f be a function that satisfies the following conditions.

1. f is continuous on the interval [a, b].

2. f is differentiable in (a, b).

Then, there exists a number c in (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Proof. Define the new function h(x) = f(x) − f(a) − f(b)−f(a)
b−a (x − a). It is easy to see that h(x)

satisfies all the assumptions of Rolle’s Theorem. In fact, h(x) consits of a sum of f(x) which is

continuous, and a polynomial function, which is continuous as well. Therefore, hypothesis 1. in

Rolle’s Theorem holds. Morevover, f is differentible and any polynomial is differentiable, so that 2.

holds as well. Lastly, h(a) = 0 = h(b), and the last assumption of Rolle’s Theorem also holds. By

applying Rolle’s Theorem to h(x), we get that there exists a point c in (a, b) such that h′(c) = 0.

Since h′(x) = f ′(x)− f(b)−f(a)
b−a , it follows that h′(c) = 0 implies f ′(c) = f(b)−f(a)

b−a , which completes

the proof.

As an application we will see that the only functions that have vanishing derivatives over a full

interval are those functions that are constant over the same interval.

Theorem 5.2.4. If f ′(x) = 0 over the interval (a, b), then f is a constant function on (a, b).

Proof. Let x1 and x2 be two numbers taken from the interval (a, b). Suppose that x1 < x2. Since

f is differentiable on (a, b), then it will be continuous and differentiable over [x1, x2] and we can

apply the Mean Value Theorem. We therefore find c in (x1, x2) such that f ′(c) = f(x2)−f(x1)
x2−x1 . Since

f ′(c) = 0, it follows that f(x1) = f(x2). Therfore, f takes the same value on any pair of two

numbers chosen from (a, b), which means that it is a constant function over (a, b).

Theorem 5.2.5. If f ′(x) = g′(x) over the interval (a, b), then f(x) = g(x) + k for some constant

k ∈ R.

Proof. Set F (x) = f(x)− g(x). Then, F ′(x) = f ′(x)− g′(x) = 0. Applying Theorem 5.2.4 we find

that F (x) is constant, i.e. F (x) = k fir some number k. It follows that f(x)− g(x) = k from which

we complete the proof.
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(−∞,−1) (−1, 0) (0, 2) (2,∞)

x − − + +

x− 2 − − − +

x+ 1 − + + +

Table 5.1: Signs to determine where f(x) is increasing or decreasing.

5.3 Getting information on f through its derivative

We now find more applications of the Mean Value Theorem. In this section we will see how the

derivative of f , and higher derivatives well, can be used to obtain information regarding the behavior

of the function f .

First, we will see that the derivative of a function tells use where the function increases or

decreases (recall the definition of increasing or decreasing function!).

Theorem 5.3.1 (Increasing/Decreasing Test). If f ′(x) > 0 on an interval, then f is increasing on

that interval. If f ′(x) < 0, then it is decreasing.

Proof. Let x1 and x2 be two numbers in the interval with x1 < x2. Using the MVT we find a point

c between x1 and x2 such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
,

which also can be written as

f ′(c)(x2 − x1) = f(x2)− f(x1).

Since f ′(x) > 0 on the whole interval, we find that f ′(c) > 0. So, f ′(c)(x2 − x1) > 0, which means

that f(x2) − f(x1) > 0. This gives f(x2) > f(x1) when x2 > x1. We have therefore shown that

f is increasing. To show that f is decreasing when f ′(x) < 0 on the interval is substantially the

same proof, and we leave it to the reader.

Example 5.3.2. Determine where the function f(x) = 1
4x

4−1
3x

3−x2+5 is increasing, or decreasing.

We need to compute the derivative of f , and then study the sign of it. We have

f ′(x) = x3 − x2 − 2x = x(x− 2)(x+ 1).

So, to understand the sign of f ′(x), we need to consider where the product of the three terms is

larger than zero. We have that x− 2 ≥ 0 when x ≥ 2, and x+ 1 ≥ 0 when x ≥ −1. The first term

of course is just x ≥ 0. We therefore get the table of signs as in Table 5.3.2

Computing the product of the signs, we get that f ′(x) < 0 in (−∞,−1), it is positive in (−1.0),

negative again in (0.2), and then positve in (2,∞). So, f is decreasing in (−∞,−1), increasing in

(−1.0), decreasing in (0.2), and increasing in (2,∞).

Method 5.3.3 (First Derivative Test). Suppose that c is a critical point of a differentiable

(around c) function f . Then, the following facts hold.
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[0, 2π/3] (2π/3, 4π/3) (4π/3, 2π)

f ′(x) + − +

Table 5.2: The signs of f ′(x).

1. If f ′ changes from positive to negative at c, then f is a local maximum.

2. If f ′ changes from negative to positive at c, then f is a local minimum.

3. If f ′ does not change sign around c (either is all positive or all negative), then f has neither

a local maximum nor a local minimum.

Example 5.3.4. Find the local maxima and minima of f(x) = x+ 2 sin(x) on the interval [0, 2π].

First of all, we need to find the critical points of f , since we know that if a point is a local

maximum or a local minimum it will be a point where the derivative either does not exist, or where

the derivative is zero. So, we have

f ′(x) = 1 + 2 cos(x),

which means that the derivative always exists, and the critical points are those points where f ′(x) =

0. This means that these points satisfy cos(x) = −1/2. In [0, 2π], the points x that solve the

equation f ′(x) = 0 are x = 2π/3 and x = 4π/3. We now need to determine the sign of f ′ around

these two points to understand whether they are points of max, min or neither of them, using the

First Derivative Test. Around x = 2π/3 we have that cos(x) is first larger than −1/2, meaning

that f ′(x) > 0, and then it becomes smaller than −1/2, meaning that f ′(x) < 0. So, using the

First Derivative Tests, we find that x = 2π/3 is a local maximum. For x = 4π/3 we have all the

way around that f ′(x) is first negative and then positive, indicating that this is a local minimum.

We can summarize this using a table of signs as in Table 5.3.4

Definition 5.3.5. We say that a function is concave upward in an interval, if the tangents to the

graph of the function in that interval lie all below the graph. We say that it is concave downward

if the tangent lines lie all above the graph.

The example below shows a function that is concave upward (in blue), and a function that is

concave downward (in red). Draw the tangent lines to relate what you obtain to the definition.

Method 5.3.6 (Concavity Test). 1. If f ′′(x) > 0 on an interval, then the function f is con-

cave upward on the interval.
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2. If f ′′(x) < 0 on an interval, then the function f is concave downward on the interval.

Definition 5.3.7. A continuous function f is said to have an inflection point at x if f changes its

concavity at that point.

An example of inflection point (at x = 0) is seen in the graph below.

Method 5.3.8 (Second Derivative Test). If f ′′(x) is continuous around a point c, then we can

use the following criteria to find max and min.

1. If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.

2. If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

Example 5.3.9. Consider the curve y = x4 − 4x3. We want to analyze the maxima and minima

of y, inflection points, concavity.

Since y = f(x) is a polynomial, all its derivatives are continuous. So, to obtain maxima and

minima we can use the Second Derivative Test. We have

f ′(x) = 4x3 − 12x2

f ′′(x) = 12x2 − 24x = 12x(x− 2).

Since f ′(x) = 4x3 − 12x2 = 4x2(x− 3), the critical points of f , i.e. where f ′(x) = 0 are the points

where 4x2 = 0, or x− 3 = 0. In other words, the critical points are x = 0 and x = 3. To determine

whether these points are max or min, we use the Second Derivative Test and plug them in the form

for f ′′(x). This gives us f ′′(0) = 0, and f ′′(3) = 36 > 0. The test does not produce any result for

x = 0, but it gives us that x = 3 is a point of local minimum. However, the sign of f ′′(x) passes

from negative to positive at the point x = 0, meaning that the Concavity Test says that f has

concavity upward before 0 and downward after 0. This means that x = 0 is an inflection point.

Moreover, the concavity changes again to positive after x = 3, as it can be seen by studying the

sign of f ′′(x). This allows us to sketch the function.
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Example 5.3.10. Let us use what we know so far to sketch the graph of the function f(x) = e
1
x .

Since f(x) has domain given by all x 6= 0, we need to sketch f everywhere but at x = 0. We

have that

lim
x→0+

f(x) =∞,

since 1/x→∞ as x→ 0 from the positive side. Since 1/x→ −∞ as x→ 0 from the negative side,

we also have

lim
x→0−

f(x) = 0.

So, x = 0 is a vertical line that is a vertical asymtptote on the right for f(x). Let us now consider

the horizontal asymptotes.

lim
x→∞

f(x) = 1,

since 1/x→ 0 as x→∞. Also,

lim
x→−∞

f(x) = 1,

again because 1/x → 0 as x → −∞. Now, we know how f(x) behaves at the “boundaries”

of its domain. We need to fill the gap in between. To do so, we need to understand how f

increases/decreases and the concavity of f(x). We have

f ′(x) = −e
1
x

x2
.

This means that f ′(x) < 0 for all x in its domain, since both numerator and denominator are

always positive. So, f is always decreasing.

Lastly, for the concavity, we need to comopute f ′′. We have

f ′′(x) =
e

1
x (2x+ 1)

x4
.

The only term in f ′′(x) that can change sign, and that can therefore let ′′(x) change sign, is 2x+ 1.

Therefore, we find that f ′′(x) < 0 when 2x + 1 < 0 (i.e. when x < −1/2), and that f ′′(x) > 0
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when 2x+ 1 > 0 (i.e. when x > −1/2). Moreover, we know that at x = −1/2 the function has an

inflection point.

Now we have all the information to plot the function.

Figure 5.3: Plot of the function f(x) = e1/x

5.4 De l’Hôpital’s rule

While computing limits we have found several cases where we had to bypass the issue of having an

indeterminate form of type 0
0 or ∞∞ . We now consider a useful application of derivatives to compute

the limits of indeterminate forms of this type.

Method 5.4.1 (De L’Hôpital’s rule). Suppose that f and g are differentiable and g′(x) 6= 0 on

an open interval I that contains the point c, or such that c is at one of the extremes of I, except

possibly at c where c can be infinite. Then, if limx→c f(x) = limx→c g(x) = 0 or limx→c f(x) =

limx→c g(x) = ±∞, i.e. if we have an indeterminate form of type 0
0 or ∞∞ , then we have the equality

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
,

if the limit on the right hand side exists (finite or infinite).

Example 5.4.2. Consider the limit

lim
x→1

lnx

x− 1
.

In this case, we have that both numerator and denominator go to zero, meaning that we have a 0
0

indeterminate form. We can use de l’Hôpital’s rule with f(x) = lnx and g(x) = x− 1 to compute

the limit. Since d
dx lnx = 1

x and d
dx(x− 1) = 1, we get

lim
x→1

f ′(x)

g′(x)
= lim

x→1

1
x

1
= lim

x→1

1

x
= 1.

So,

lim
x→1

lnx

x− 1
= 1.
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Example 5.4.3. Compute the limit

lim
x→∞

ex

x2
.

This limit is an indeterminate for of type ∞∞ . Apply de l’Hôpital’s rule and compute the limit

of

lim
x→∞

ex

2x
.

This is again an indeterminate form of type ∞∞ , so we can again apply de l’Hôpital’s rule and we

now have the limit

lim
x→∞

ex

2
=∞,

which now simply gives us that

lim
x→∞

ex

x2
=∞.

Exercise 5.4.4. Show that for any choice of a positive integer n, we have

lim
x→∞

ex

xn
=∞.

Another important type of indeterminate form is of type 0 · ∞. This happens whenever we

have a product of two functions f(x) and g(x) one of which has limit that goes to zero, and the

other one that has a limit that goes to ±∞. This is an indeterminate form because depending on

the specific limit, the answer can vary. Consider for instance the following example, showing that

various types of answers can be found when having a product of 0 · ∞.

Example 5.4.5. Take the functions f(x) = x and g(x) = 1/x2. Then,

lim
x→∞

f(x) =∞,

lim
x→∞

g(x) = 0,

but obviously we have

lim
x→∞

f(x)g(x) = lim
x→∞

1/x = 0.

Now define f(x) = x2, and g(x) = 1/x. We can see now that

lim
x→∞

f(x) =∞,

lim
x→∞

g(x) = 0,

but obviously we have

lim
x→∞

f(x)g(x) = lim
x→∞

x =∞.

Also, the limit of an infinite limit times a zero limit can also give a constant! Consider for instance

the case where f(x) = x, and g(x) = 1/x. Then we see that

lim
x→∞

f(x) =∞,

lim
x→∞

g(x) = 0,

but obviously we have

lim
x→∞

f(x)g(x) = lim
x→∞

1 = 1.
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Exercise 5.4.6. Find examples similar to the previous ones where you display all possible behaviors

of the limits of type 0 · ∞, but using a limit as x→ a for some number a of your choice.

We can deal with an indeterminate form of this type by reducing the problem to a case where

we can apply de l’Hôpital’s rule! This is done by writing a product as a quotient, using the fact

that

f(x)g(x) =
f(x)

1
g(x)

,

or also

f(x)g(x) =
g(x)

1
f(x)

,

The following example showcases how to do this.

Example 5.4.7. Consider the limit

lim
x→0+

x lnx.

Of course this is a 0 · ∞ type of indeterminate form, since lnx goes to −∞, as x approaches zero

from the right. We can write x lnx = lnx
1
x

, which now gives us an ∞∞ indeterminate form, to which

we can apply de l’Hôpital’s rule!

We get

lim
x→0+

lnx
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

−x = 0.

When we have a difference of functions f(x)− g(x), such that both functions go to infinity (or

both to negative infinity), then we have a difference of type∞−∞, where again all sor tof scenarios

can happen. In this case, we again try to reduce the limit to an indeterminate form of type 0
0 or

∞
∞ to apply de l’Hôpital’s rule.

Example 5.4.8. Consider the limit limx→∞ e
x−x. Obviously we have a situation of type∞−∞.

What we can do here, is to create a quotient where we get ∞∞ . We do this by grouping a factor

of x. We have:

ex − x = x(
ex

x
− 1).

Now, we can use de l’Hôpital’s rule to see that limx→∞
ex

x =∞. So, the initial limit gives us

lim
x→∞

ex − x = lim
x→∞

x(
ex

x
− 1) =∞,

since both terms in the product go to ∞.

Other three types of indeterminate forms are 00,∞0, 1∞. It is in fact easy to construct examples

where each of these forms give different types of behaviors for the limits.

These indeterminate forms arise when we have situations of type y = f(x)g(x), and the method

to solve them is by applying either of the following two procedures:

• Take logarithms of the function: ln y = g(x) ln f(x).

• Use the fact that exponential and logarithms are one the inverse to the other by writing

y = eg(x) ln f(x).
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Example 5.4.9. Compute the limit:

lim
x→0+

xx.

We have an indeterminate form of type 00. Use the second rule given above to write xx = ex lnx.

So, we have to compute

lim
x→0+

xx = lim
→0+

ex lnx.

From Example 5.4.7 we know that lim→0+ x lnx = 0, so that we have

lim
x→0+

ex lnx = e0 = 1.

Example 5.4.10. Compute the limit:

lim
x→∞

(lnx)
1
x .

Observe that this is an indeterminate form of type ∞0. Taking logarithms, we have that

lim
x→∞

ln((lnx)
1
x ) = lim

x→∞

1

x
ln lnx.

This is now an indeterminate form of type 0 ·∞. We know how to deal with this. Write the function

as a fraction: 1
x ln lnx = ln lnx

x . Now we can see right away that our limit is an ∞∞ indeterminate

form. Apply de l’Hôpital’s rule to this limit.

lim
x→∞

ln lnx

x
= lim

x→∞

1
x lnx

1
= lim

x→∞

1

x lnx
= 0.

So, limx→∞
1
x ln lnx = 0 as well, which gives that limx→∞ ln((lnx)

1
x ) = 0. This implies (why?)

that

lim
x→∞

(lnx)
1
x = 1.

5.5 Optimization

The concepts of minimization and maximization have important applications in real life, where we

often encounter the problem of performing some task with the minimum “cost”, or “maximum”

gain. For instance, one might want to determine the optimal route between two points in order to

minimize the distance. Or we might want to minimize production costs and maximize profits of a

business.

Optimization problems have recently found fundamental applications in artificial intelligence,

especially machine learning, where training neural networks is an alias name for optimizing a neural

network function with respect to some objective.

We show a typical simple example of optimization problem.

Example 5.5.1. Suppose that a farmer has 2400 ft of fencing and needs to fence off a rectangular

area which borders a (straight) river. We would like to find how the farmer should define the

dimensions of the fecning in order to maximize the area enclosed in the fence.
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Observe first that since one of the sides of the area will border the river, we need to use fencing

only for 3 sides of the rectangle. Moreover, since two sides are the same, the way we can break

down the fencing into 3 sides needs to be of the form:

2x+ y = 2400.

From here we can obtain that y = 2400 − 2x. Now, having obtained y as a function of x, and

recalling that the area of a rectangle is just the product of two adjacent sides, we can write down

the area enclosed by the fencing as a function of x (which is one of the sides). We get

A(x) = xy = x(2400− 2x) = 2400x− 2x2.

So, the area is just a polynommial in x. Since we have two sides of size x, and 2400 ft of fence, x

can be at most 1200, which would give us a rectangle that is collapsed to a line. So, the values that

x gets are between 0 and 1200. We want to find the maximum for A(x) such that 0 ≤ x ≤ 1200.

To find the maximum of this function, we now proceed by applying the Closed Interval Method.

We need to find the critical points. Since A(x) is just a polynomial, we know that it has no points

where derivatives do not exist. Therefore, we just need to obtain where A′(x) = 0. We have

A′(x) = 2400− 4x,

which gives x = 600. So, to obtain the maximum value, we just need to compare A(x) evaluated at

the critical point x = 600, as well as A(x) evaluated at the extremes of the interval [0, 1200]. We find

that A(600) = 720, 000, while A(0) = A(1200) = 0. So, to maximize the area, the farmer needs to

have a rectangle that has two sides of size x = 600, and a size y = 2400−2x = 2400−1200 = 1200.

The next example is similar to the previous one, but it adds a constraint on how the rectangle

can vary, making it slightly more complex.

Example 5.5.2. We want to find the rectangle of largest area with the bottom two vertices lying

on the parabola y = x2, and with the top side on the line y = a.

Here, two points have to be of type (x,±x2), since these are the points of the parabola. Observe

that since one side is placed at height equal to a, we have that the vertical sides of the rectangle

have size of a − x2. The horizontal side has size 2x of course, since the points have horizontal

coordinates given by −x and x. Then, the area is given by the formula

A(x) = 2x(a− x2) = 2xa− 2x3.

The values of x are between 0 and
√
a (why?). Again, to maximize here, we need to use the Closed

Interval Method. We know that the function A is differentiable everywhere, so we just need to find

the zeros of the derivative of A. We get

A′(x) = 2a− 6x2.

The solutions to this equation are x = ±
√

a
3 , which gives us the critical point

√
a
3 . We now have

to compare all possibilities, so we have to evaluate A at 0,
√
a and

√
a
3 . Since A(0) = A(

√
a) = 0

(of course), then the maximum is reached at x =
√

a
3 .
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The following method is useful for finding absolute maxima and minima.

Method 5.5.3 (First Derivative Test for Absolute Extrema). Let f be continuous on the

interval I, and let c be a critcal number of f . Then, we have the following.

• If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c, f(c) is an absolute maximum.

• If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c, f(c) is an absolute minimum.

Example 5.5.4. Suppose that we want to find the dimensions of a cylindrical can that is supposed

to hold 1L of oil, in a way that we minimize the metal used to produce the can, in order to decrease

the production costs.

Minimizing the amount of metal used to produce the can amounts to minimizing the surface of

the cylinder. We want to express the area as a function of the raidius of the cylinder. We call r

the radius of the discs at the base and top of the cylinder, while h is the height of the cylinder.

Observe that the area consists of two discs, or radius r, and the cylindrical vertical surface that

connects them. The area of a disc of radius r is given by πr2. The area of the vertical sheet is

given by the perimeter of the circle times the height h of the cylinder. We get 2πrh. So, the total

area is given by

A = 2πr2 + 2πrh.

Now, there are two variables in this formula, namely r and h. We need somehow to reduce the

problem to something depending on only one variable. We do this by using the volume of the

cylinder. In fact, we have that the volume is given by πr2h,and this is 1L, which gives us

πr2h = 1L = 1000cm3.

So, we get

h =
1000

πr2
.

We now can write A as a function only of the variable r, obtaining

A(r) = 2πr2 + 2πr
1000

πr2
= 2πr2 +

2000

r
,

where r > 0. Of course, r = 0 would be a cylinder with no volume, which is not something possible

if we want to have one liter volume. We need to find the critical values of A(r). These are points

where A′(r) = 0, since A is differentiable for all r > 0. We have

A′(r) = 4πr − 2000

r2
=

4(πr3 − 500)

r2
.

We find that A′(r) = 0 for r = 3

√
500
π . Now, we can apply Method 5.5.3 to the interval I = (0,∞)

to say that r = 3

√
500
π is a point of absolute minimum. In fact, it is easy to see that A′(r) < 0 for

r < 3

√
500
π amd A′(r) > 0 for r > 3

√
500
π .

Now, to complete, we just need to obtain the corresponding value of h, which is done by plugging

the value r = 3

√
500
π in the formula

πr2h = 1L = 1000cm3.

relating r and h. We get h = 2r.



5.6. NEWTON’S METHOD 53

5.6 Newton’s Method

We now describe a method for solving equations numerically, based on differentiation. This is gen-

erally an important problem, since in many situations we are required to solve certain equations.

However, exact approaches to obtain solutions of equations are very limited. For instance, given a

general fifth order polynomial, we do not have a formula that tell us what the solutions are. New-

ton’s method deals with this problem. This is an iterative method that produces approximations

for a solution with higher accuracy as iterations increase.

Figure 5.4: Graphic explanation of Newton’s method (from Wikipedia)

The method is based on the geometric idea shown in Figure 5.6. Given an function of type

y = f(x), for which we want to find a solution to the corresponding equation f(x) = 0, we start

the method with an approximate guess for a solution. In this case this is called xn, where n is zero

at the initialization, but is higher than zero in the next iterations. The zero is obtained where the

blue line crosses the horizontal line corresponding to y = 0. To find a better approximation, in this

case called xn+1 because it represents the next approximation than xn, we see that if we take the

tangent line to the function at the point (xn, f(xn)) and get the intersection point between this

line and y = 0, we get closer to a solution. In equations, the tangent line is given by

y − f(xn) = f ′(xn)(x− xn),

since f ′(xn) is the sloper of the tangent (as we know very well from our study of derivatives). When

x gets the value xn+1 we know that y = 0, since xn+1 is exactly the point where the tangent line

meets the line y = 0. Therefore, we have

−f(xn) = f ′(xn)(xn+1 − xn).

In the assumption that f ′(xn) is not zero, we can solve for xn+1 which gives us

xn+1 = xn −
f(xn)

f ′(xn)
.

This procedure gives us a way of producing a better approximation for a solution (xn+1), once we

start with some approximate solution (xn).
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As we perform this procedure more and more times, we produce a sequence of approimations

xn for n = 0, 1, . . . where n increases. If we get closer and closer to the actual solution, which we

call r for “root”, then we say that the sequence of approximations converges to a root or solution

of the equation, and we write

lim
n
xn = r.

We summarize the whole discussion in the folllowing.

Method 5.6.1 (Newton’s Method). Let f(x) be a differentiable function, of which we want to

find a root, i.e. a number r such that f(r) = 0. Let x0 be a (rough) approximation of a solution

to the equation f(x) = 0. We can proceed iteratively (in the assumption that at each step the

derivative does not vanish) according to the rule

xn+1 = xn −
f(xn)

f ′(xn)
.

Example 5.6.2. Suppose that we want to find the square root of 2, but that we do not have a

calculator at hand. We can then use Newton’s method to obtain the value. In fact,
√

2 is that

value that satisfies the equation x2− 2 = 0. This means that we can set f(x) = x2− 2 and use the

method. Here we have f ′(x) = 2x. Therefore, the iteration takes the form

xn+1 = xn −
x2
n − 2

2xn
.

We need a starting point, i.e. we need some x0. We will set x0 = 1, which is a relatively accurate

guess for the square root of 2. Then we have

• x0 = 1.

• Then x1 = x0 −
x20−2
2x0

= 1− 1−2
2 = 1 + 1/2 = 1.5.

• Repeat: x2 = x1 −
x21−2
2x1

= 1.5− (1.5)2−2
2·1.5 = 1.416̄.

• Now, x2
2 = 2.0069. So, |2− x2

2| < 7 · 10−3.

We have found a root of 2 with an accuracy of 10−3.

Now a question arises: How do we know when to stop the iterations? There is a useful criterion

that tells us when the sequence is converging to he required solution. The criterion is that if we

want to achieve a solution with an accuracy of say 10−5, then we can check subsequent iterations

xn and xn+1 each time that we produce a new one. In this case, when |xn+1 − xn| < 10−5, we can

stop the iterations.

Example 5.6.3. Let us now compute a root of the equation cos(x)− x = 0. Here we have for the

iterations

xn+1 = xn −
cos(x)− x
− sin(x)− 1

.

From a simple drawing of the functions cos(x) and x, we see that the point were they are the same

falls below x = 1. So, we initialize the iterations with x0 = 1. We get the sequence of subsequent

values:
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• x1 = 0.75036.

• x2 = 0.73911.

• x3 = 0.73908.

Since |x3−x2| is in the order of 10−4, we expect that we have achieved a relatively good convergence

to the solution.
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Chapter 6

Integrals

We now consider the notion of integral. As we will see, integration refers to the computation of

geometric notions such as the area under a given curve. This is the motivational agument that

naturally gives rise to integrals, similarly to how derivatives were associated to velocities and the

slope of a tangent line to a curve.

6.1 Antiderivatives and Indefinite Integrals

The problem of finding antiderivatives is somehow the opposite of finding the derivative of a func-

tion. In fact, suppose that we know the velocity of a particle as a function of time. We would

like to know the function that relate space to time. In fact, we know that the derivative of space

with respect to time gives us exactly the velocity. Our problem, therefore, is that of finding a

function whose derivative is the given velocity. This is the reason why these objects are called

antiderivatives. We formalize this discussion in the following.

Definition 6.1.1. Let f be a function defined on the interval I. A function F is called an an-

tiderivative (or sometimes a primitive) of f if F ′(x) = f(x). In other words, f is the derivative of

F .

Remark 6.1.2. It is clear that antiderivatives are uniquely determined. In fact, observe that if F

is an antiderivative of f , then for any number c we have also that F + c is an antiderivative of f

(why?).

The following result shows that adding constants to any antiderivative gives us exactly all

possible antiderivatives of a function. So, in a sense, the previous remark was as general as possible.

Theorem 6.1.3. Let F be an antiderivative of f , which is defined on the interval I. Then, if G is

another antiderivative of f , there exists a constant c such that

F (x) = G(x) + c.

Proof. By definition we have that F ′(x) = G′(x) for all x in I. Then, the function F (x) − G(x)

has zero derivative on all I. Then, by Theorem 5.2.4 F (x)−G(x) is a constant, let us call this c.

It follows that F (x) = G(x) + c.

57
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Definition 6.1.4. Let f be a function defined on I and let F be an antiderivative of f . We define

the indefinite integral of f as the set of all antiderivatives of f , and indicate it as∫
f(x)dx.

Observe that by Theorem 6.1.3
∫
f(x)dx consists of all the functions F (x) + c, where c is an

arbitrary number (a constant).

Example 6.1.5. Obtain
∫

(x2 + x)dx.

We need to find a function whose derivative gives x2+x. We know that derivatives of polynomials

give polynomials. Also, we know the expression for it: d
dx(anx

n + · · · a1x+ a0) = nanx
n−1 + · · · a1.

We apply this here. We take F (x) = 1
3x3 + 1

2x
2. Computing the derivative of F we get

F ′(x) =
1

3
3x2 +

1

2
2x = x2 + x = f(x).

Now,
∫
f(x)dx is the set of functions of type 1

3x3 + 1
2x

2 + c, where c is a constant.

Exercise 6.1.6. Can you find a formula for the indefinite integral of anx
n + · · ·+ a1x+ a0?

Example 6.1.7. Find the indefinite integral of f(x) = 1
x over an interval of positive numbers.

We know that the derivative of the function lnx is exactly 1
x . Then we have that

∫
f(x)dx is

the set of functions of type lnx+ c where c is a constant.

It is easy to see that if the interval is contained in the negative numbers, then we just have to

replace lnx with ln−x.

Example 6.1.8. Find a function F (x) with the following properties:

• F ′(x) = sinx.

• F (0) = 5.

We first need to find the indefinite integral of sinx, since F ′(x) = sinx means that F has to be an

antiderivative of sinx. We know that d
dx cosx = − sinx, therefore an antiderivative of sinx is given

by − cosx. The indefinite integral consists of functions of type F (x) = − cosx+ c. Now imposing

the condition that F (0) = 5 we get F (0) = −1 + c = 5, which implies c = 6. So, the function we

are looking for is F (x) = − cosx+ 6.

We have the following rules for finding particular antiderivatives.

• For f(x) = xn, we have F (x) = xn+1

n+1 .

• For f(x) = 1
x , F (x) = lnx. For an interval in the negative numbers we have F (x) = ln−x.

• For f(x) = ex, we have F (x) = ex.

• For f(x) = cosx, F (x) = sinx.

• For f(x) = sinx, F (x) = − cosx.

• For f(x) = sec2 x, F (x) = tanx.
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• For f(x) = secx tanx, F (x) = secx.

• For f(x) = 1√
1−x2 , F (x) = sin−1 x.

• For f(x) = 1
1+x2

, F (x) = tan−1 x.

• For f(x) = coshx, F (x) = sinhx.

• For f(x) = sinhx, F (x) = coshx.

6.2 The area under a curve

Suppose we are given a curve, and assume that we are interested in finding the area between the

curve and the ~x-axis. We know how to compute the area of polygons from elementary geometry, but

it is not clear how to generalize the notion of area to the case of curved objects. The intuition behind

how to proceed is that we can approximate a curved object by using polygons, e.g. rectangles, and

that we can make this approximation increasingly accurate by using more and more rectangles.

This situation is depicted in Figure 6.2 and Figure 6.2. Using just two rectangles we obtain a

very rough approximations of the area, while increasing the number of rectangles we get a better

estimate of the area.

Figure 6.1: A rough approximation of the area under a curve using rectangles (from Wikipedia)

Figure 6.2: A good approximation of the area under a curve using rectangles (from Wikipedia)

The way to formalize this procedure is the following. Assume that the curve is defined through

the function f(x) defined on the interval [a, b]. Then, we introduce a partition of the interval [a, b].

This means that we find points a = x0, x1, · · · , xn = b subdividing [a, b] into subintervals. We
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assume that the distance between xi and xi+1 is the same, so that each subinterval has the same

size ∆x. We now evaluate the function f on the points x1, . . . , xn (we skip x0, can you see why?).

Now, we can define the rectangles R1, R2, . . . , Rn where R1 = f(x1)∆x, R2 = f(x2)∆x and so on

up to Rn = f(xn)∆x.

As observed above, as the number of rectangles increases, i.e. as n grows to∞, we approximate

the area under the curve y = f(x) with more accuracy. Therefore, we pose the following (rather

informal) definition.

Definition 6.2.1. Given f(x) defined over [a, b], the area under the curve y = f(x) is the limit of

the areas of the rectangles constructed above as n goes to ∞. In symbols, we can write

A = lim
n→∞

R1 + · · ·+Rn = lim
n→∞

f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x.

Similarly, we can also construct the rectangles Ri above by evaluating f(x) at the points

x0, x1, . . . , xn−1. We get rectangles L1 = f(x0)∆x, L2 = f(x1)∆x and so on up to Ln = f(xn−1)∆x.

When f is a continuous function, it turns out that the limit in Definition 6.2.1 always exists

and also the limit

lim
n→∞

L1 + · · ·+ Ln = lim
n→∞

f(x0)∆x+ f(x1)∆x+ · · ·+ f(xn−1)∆x

exists and the two limits are the same. In fact, even more is true. One could choose points x∗i
arbitrarily in each interval [xi, xi+1] for each i = 0, 1, . . . , n− 1 and construct the limit

lim
n→∞

f(x∗0)∆x+ f(x∗1)∆x+ · · ·+ f(x∗n−1)∆x

and this limit would be the same as the two limits above. For instance, in Figure 6.2 and Figure 6.2

the middle point x∗i = xi+xi+1

2 of each interval [xi, xi+1] has been chosen to construct the rectangles.

6.3 Definite Integrals

Definition 6.3.1. Let f be a function defined over the interval [a, b], which we subdivide in n

parts. Then, if the limit

lim
n→∞

f(x∗0)∆x+ f(x∗1)∆x+ · · ·+ f(x∗n−1)∆x

is independent of the chosen points x∗i , we will call it the definite integral of f from a to b, and

write ∫ b

a
f(x)dx = lim

n→∞
f(x∗0)∆x+ f(x∗1)∆x+ · · ·+ f(x∗n−1)∆x.

In this case, we say that the function is intebrable on [a, b].

Remark 6.3.2. The definition given above is also called the Riemann integral, as opposed to other

types of integration (e.g. Lebesgue) which we do not consider in this course. The sums of type

R1 + · · ·+Rn and so on (for arbitrary choices of sample points x∗i ) are called Riemann sums.

Theorem 6.3.3. If f is a continuous function everywhere on [a, b] except possibly at a finite number

of points where it has a jump discontinuity, then f is integrable over [a, b], i.e.
∫ b
a f(x)dx exists.
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Let us now compute an integral, making use of Theorem 6.3.3.

Example 6.3.4. Let f(x) = x2 be defined over the interval [0, 1]. We want to compute
∫ 2

0 x
2x.

First, observe that f(x) = x2 is continuous, and therefore applying Theorem 6.3.3 we know

that it is integrable over [0, 1]. Moreover, we know that however we choose to sample points x∗i in

the subintervals, the limit will be the same (equal to the integral). So, we will compute Riemann

sums of type R1 + · · · + Rn, which means that our sample points will be the rightmost points of

the subintervals.

Divide [0, 1] in n parts. This means that ∆x = 1−0
n = 1

n . Also, the points will be x0 = 0,

x1 = 0 + ∆x = 1
n , x2 = x1 + ∆x = 1

n + 1
n = 2

n and so on. So, point xi = i
n up to xn = n

n = 1. The

function f evaluated at the points xi gives us f(xi) = f( in) = i2

n2 .

Then, R1 = f(x1)∆x = 12

n2
1
n = 1

n3 , and more generally for each i we have Ri = i2

n2
1
n = i2

n3 .

Therefore, we get

R1 + · · ·+Rn =
1

n
f(

1

n
) +

1

n
f(

2

n
) + · · ·+ 1

n
f(
n

n
)

=
1

n
(
1

n
)2 + · · ·+ 1

n
(
n

n
)2

=
1

n

1

n2
(12 + 22 + · · ·+ n2).

We now use the following identity (whose proof we omit):

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Then, we get
n∑
i=1

Ri =
1

n3

n(n+ 1)(2n+ 1)

6
.

To take the limit of this quantity (which is the integral by definition), we will treat this quantity

as we have done for the limits with respect to x that goes to ∞. We have

lim
n→∞

n∑
i=1

Ri = lim
n→∞

1

n3

n(n+ 1)(2n+ 1)

6

= lim
n→∞

(n+ 1)(2n+ 1)

6n2

= lim
n→∞

2 + 3/n+ 1/n2

6
= 2/6

= 1/3.

Remark 6.3.5. When we want to compute approximations of integrals, it is often useful to choose

as sample point x∗i the midpoint of the subinterval [xi, xi+1]. Usually, this gives us a good approx-

imation of the integral.



62 CHAPTER 6. INTEGRALS

6.4 Properties of Integrals

Our definition of integral used the fact that a < b. When we have instead a > b we set∫ b

a
f(x)dx = −

∫ b

a
f(x)dx.

Also, if a = b we set ∫ a

a
f(x)dx = 0.

Integrals satisfy the following properties.

Proposition 6.4.1. The following properties hold.

1.
∫ b
a kdx = k(b− a) for any constant k.

2.
∫ b
a [f(x) + g(x)]dx =

∫ b
a f(x)dx+

∫ b
a g(x)dx.

3.
∫ b
a kf(x)dx = k

∫ b
a f(x)dx.

Proof. The proof of these facts is simple, and it is left to the reader as an exercise.

Theorem 6.4.2. The following results hold.

•
∫ c
a f(x)dx =

∫ b
a f(x)dx+

∫ c
b f(x)dx for any choice of b between a and c.

• If f(x) ≥ 0 in [a, b], then
∫ b
a f(x)dx ≥ 0.

• If f(x) ≥ g(x) in [a, b], then
∫ b
a f(x)dx ≥

∫ b
a g(x)dx.

• If m ≤ f(x) ≤M in [a, b], then m(b− a) ≤
∫ b
a f(x)dx ≤M(b− a)

6.5 The Fundamental Theorem of Calculus

The fundamental theorem of calculus (FTC for short) is the cornerstone of Calculus I, as the name

suggests. We will prove it in two parts. The first part shows that if we have a continuous function

f(x) defined over an interval [a, b], then there exist antiderivatives to f(x), and it also shows how

to construct such antiderivatives (we already know that knowing a particular one gives us all of

them by translations by a constant).

Theorem 6.5.1 (FTC part I). Let f(x) be continuous in [a, b]. Then, there exists an antideriva-

tive F (x) of f(x), given by

F (x) =

∫ x

a
f(t)dt.

The function F is continuous on [a, b] and differentiable in (a, b), with F ′(x) = f(x).
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Proof. We show that for any x in (a, b) F is differentiable and F ′(x) = f(x). For x = a or x = b

we can proceed in the same way to show continuity in a one-sided manner, i.e. taking right and

left limits.

We compute F (x+ h)− F (x) when h > 0. We have

F (x+ h)− F (x) =

∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt

=

∫ x

a
f(t)dt+

∫ x+h

x
f(t)dt−

∫ x

a
f(t)dt

=

∫ x+h

x
f(t)dt,

where in the second equality we have used the first property in Theorem 6.4.2. Therefore, the

quotient which we need to compute the derivative of F at x is given by

F (x+ h)− F (x)

h
=

∫ x+h
x f(t)dt

h
. (6.1)

Now, since f is continuous in the interval [x, x + h], it follows that it has a minimum m and a

maximum M , due to the Extreme Value Theorem. Using the fourth property of Theorem 6.4.2 we

get

m(x+ h− x) ≤
∫ x+h

x
f(t)dt ≤M(x+ h− x),

and therefore

mh ≤
∫ x+h

x
f(t)dt ≤Mh. (6.2)

By dividing Inequality (6.2) by h we find

m ≤
∫ x+h
x f(t)dt

h
≤M. (6.3)

By Equation (6.1) we get

m ≤ F (x+ h)− F (x)

h
≤M. (6.4)

Since m and M are in [f(x), f(x+ h)], when we take the limit h→ 0 the interval [f(x), f(x+ h)]

collapses to the point f(x), because f is continuous, forcingm andM to be equal to f(x). Therefore,

by the Squeeze Theorem,

lim
h→0

m = lim
h→0

F (x+ h)− F (x)

h
= lim

h→0
M,

which is equal to f(x). This shows that F ′(x) = f(x).

To deal with the case where h < 0 we can proceed in the same way by being careful about the

signs. For the cases x = a and x = b, as stated above, the proof is identical but only one sided

limits are taken.
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Theorem 6.5.2 (FTC part II). If f(x) is continuous on [a, b], then∫ b

a
f(x)dx = F (b)− F (a),

where F is any antiderivative of f , i.e. where F ′(x) = f(x).

Proof. Consider the antiderivative F (x) =
∫ x
a f(t)dt, which was defined in part I of FTC. We also

know that F (a) =
∫ a
a f(t)dt = 0. So, it follows that F (b) − F (a) = F (b) =

∫ b
a f(t)dt, which

can be written simply as F (b) − F (a) =
∫ b
a f(x)dx, simply by renaming the variable t by x.

Now, we have to show that the same holds for any antiderivative. We have shown that if f is

continuous, any two antidereivatives differ by a constant for all x in (a, b). By continuity it also

holds that F and any other antiderivative G differ by a constant k also on a and b. Therefore,

G(b)−G(a) = [F (b) + k]− [F (a) + k] =
∫ b
a f(x)dx, which completes the proof.

Theorem 6.5.2 is very useful to compute integrals. For instance, computing the integral of

f(x) = x2 in [0, 1] becomes much easier, compared to the direct method used in Example 6.3.4.

Example 6.5.3. We compute the integral
∫ 1

0 x
2dx. An antiderivative of f(x) = x2 is given by

F (x) = x3

3 . Therefore, using Theorem 6.5.2 we have that∫ 1

0
x2dx = F (1)− F (0) =

12

3
− 02

3
=

1

3
.

Observe that this agrees with the result found in Example 6.3.4.

6.6 Substitution Rule

We have seen that in order to compute definite integrals, we need to be able to compute antideriva-

tives. This means that we need to compute the indefinite integrals. We now consider an important

technique that can be considered as a sort of inverse to the chain rule.

Method 6.6.1 (Substitution Rule). Let f(x) be a continuous function defined on the interval

I, and let g(x) be a differentiable function with values in I, i.e. such that we can compose the two

functions. Then, we have the following equality:∫
f(g(x))g′(x)dx =

∫
f(u)du, (6.5)

where we set g(x) = u.

Proof. Suppose that F (x) is an antiderivative of f(x). Then, by the chain rule we have d
dx(F (g(x))) =

F ′(g(x))g′(x) = f(g(x))g′(x). Therefore, F (g(x))+k is the most general antiderivative of f(g(x))g′(x).

So, ∫
f(g(x))g′(x)dx = F (g(x)) + k.

Now, if we set g(x) = u, we also find that∫
f(u)du = F (u) + k = F (g(x)) + k.

This completes the proof.



6.6. SUBSTITUTION RULE 65

Remark 6.6.2. Observe that the differential du is obtained, informally, as du = g′(x)dx. This is

motivated by the fact that du
dx = g′(x), which can be multiplied on both sides by dx.

Example 6.6.3. We now compute
∫
x3 cos(x4 − 3)dx.

Observe that the derivative of the argument of the cosine is given by d
dx(x4−3) = 4x3. Therefore,

in order to have the derivative of g(x) = x4 − 4 in the integral, we just need a factor of 4. We can

obtain this by multiplying and dividing by 4. We have∫
x3 cos(x4 − 3)dx =

1

4

∫
cos(x4 − 3)4x3dx.

Now, we can use the substitution rule with f(u) = cos(u), having set u = x4 − 3. We have∫
x3 cos(x4 − 3)dx =

1

4

∫
cos(u)du =

1

4
sin(u) + k =

1

4
sin(x4 − 3) + k.

Example 6.6.4. Compute
∫

x√
1+x2

dx.

Here again, we want to solve this integral by using the substitution rule. We have to identify

a component that can play the role of f(u), and a component that can play the role of g(x) = u.

Consider the function f(g(x)) = 1√
1+x2

, where f(x) = 1√
x

and g(x) = 1 + x2. We have that

g′(x) = 2x, so that x√
1+x2

can almost be written as f(g(x))g′(x), where “almost” is due to the fact

that we are missing a factor of 2. Once again, we can introduce it in order to be able to apply the

substitution rule as in the previous example.∫
x√

1 + x2
dx =

1

2

∫
2x√

1 + x2
dx =

1

2

∫
1√
u
du =

√
u+ k.

Since u = g(x) = 1 + x2, we get ∫
x√

1 + x2
dx =

√
1 + x2 + k.

Comnbining the substitution rule and the Fundamental Theorem of Caclulus part II, we get the

rule for definite integration using the substitution rule. Under the same hypothesis as Method 6.6.1,

we have ∫ b

a
f(g(x))g′(x)dx =

∫ g(b)

g(a)
f(u)du.

The proof is simple, and lef to the reader as an exercise.
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Chapter 7

Applications of Integration

7.1 Areas between curves

We have introduced integration as a formalization of the problem of finding the area under a curve.

The problem was to find the area between the horizontal x axis, and a given curve y = f(x) defined

through some function (which was assumed to be continuous for simplicity). Observe that the

horizontal axis is given by the equation y = 0. Therefore, we can think of our original problem as

finding the area between the function y = f(x) and the function y = g(x) where g(x) = 0.

In fact, the same reasoning can be applied for any function g(x). We can therefore define the

area between two curves y = f(x) and y = g(x) (in the assumption that f(x) ≥ g(x)) by the

integral

A =

∫ b

a
[f(x)− g(x)]dx.

When f(x) and g(x) do not satisfy an equality of type f(x) ≥ g(x), then we can use absolute

values, to compute the area between f(x) and g(x):

A =

∫ b

a
|f(x)− g(x)|dx.

Example 7.1.1. Compute the area enclosed between the parabolas y = x2 and y = 2x−x2, where

x varies between 0 and 1.

Using our definition of area between curves, we need to compute∫ 1

0
|x2 − (2x− x2)|dx =

∫ 1

0
|2x2 − 2x|dx =

∫ 1

0
[2x− 2x2]dx

From the Fundamental Theorem of Calculus (part II), we need to first find an antiderivative of

−2x2 + 2x. This is easily done, since the function is a polynomimal. We see that an antiderivative

is given by F (x) = −2x3

3 + x2. Then we need to evaluate F at 0 and 1. We have

A =

∫ 1

0
|2x2 − 2x|dx = F (1)− F (0) = −2

3
+ 1 =

1

3
.

Remark 7.1.2. We now start using the notation [F (x)]ba = F (b)− F (a).
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Example 7.1.3. Consider the functions f(x) = x√
x2+1

and g(x) = x4 − x. We want to find the

area enclosed between the functions.

We need to understand the extremes of integration. They correspond to where the functions

equal each others. By plotting the functions (try it!) and studying their derivatives and concavities,

horizontal asymptotes and so on, we can understand that there are two points where f(x) = g(x).

One point is rather obvious, and it is x = 0. The other one is quite difficult to understand. It

is found around x = 1. We then apply Newton’s Method to find an approximate solution to the

equation f(x) = g(x), which is the same as trying to find f(x) − g(x) = x√
x2+1

− x4 + x = 0.

Initializing at x = 1 and performing two iteraitons we find the approximate solution x = 1.1909.

So, we need to integrate between 0 and 1.19.

We have

A =

∫ 1.19

0
[f(x)− g(x)]dx =

∫ 1.19

0
f(x)dx−

∫ 1.19

0
g(x)dx =

∫ 1.19

0

x√
x2 + 1

dx−
∫ 1.19

0
(x4 − x)dx.

An antiderivative of x4 − x is just given by x5

5 −
x2

2 , so the second integral is easily solved. To

solve the first one, one can use substitution to find the antiderivative
√
u, where u = x2 + 1. Then,

indicating by we have

A =

∫ 1.19

0

x√
x2 + 1

dx−
∫ 1.19

0
(x4 − x)dx = [u]1.192+1

1 − [
x5

5
− x2

2
]1.19
0 .

We therefore find A ≈ 0.785.

7.2 Volumes

To compute volumes of a solid in three-dimensional space, one can proceed similarly to the case of

the area under a curve, but where we subdivide the along length of the solid with cross sections.

If we derive a formula for the variation of the area of cross sections along the length of the solid,

then we can integrate with respect to the length and obtain the full volume. We therefore have the

following definition.

Definition 7.2.1. Let S be a solid that lies between x = a and x = b. Let A(x) denote the area

of a cross section of S at the point x, as a function of x. Here A is assumed to be a continuous

function. Then the volume of S is

lim
n→∞

n∑
i=1

A(x∗i )∆x =

∫ b

a
A(x)dx.

Example 7.2.2. Let us compute the volume V of a sphere S of radius r.

To do this, we need to obtain a formula for the area of a cross section of S as the length along

the x axis varies, and then we have to integrate this formula between −r and r. In fact, due to

symmetry of the sphere, we can simply compute the integral between 0 and r, and then multiply

the result by 2.

To compute the area of a cross section at x, i.e. A(x), observe that cross sections of a sphere

are just disks. However, the radius of the disk changes depending on x. In other words, it is a

function of x. If y is the point on the sphere with x coordinate, we have that

A(x) = πy2 = π(r2 − x2).
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We now compute the integral between 0 and r of A(x) (and multiply by 2):

V = 2

∫ r

0
A(x)dx

= 2

∫ r

0
π(r2 − x2)dx

= 2[r2x− x3

3
]r0

= 2π(r3 − r3

3
)

=
4

3
πr3.

When we have a solid of revolution, i.e. a solid S obtained by rotating a curve about an axis,

we can obtain the volume by computing the area undeer the curve and then obtaining a rotation

by 2π of it. We get the definition

V = π

∫ 1

0
f(x)2dx.

Example 7.2.3. Consider the function y = x3 and consider the solid S obtained by rotating it

around the ~y-axis, bounded by y = 8.

Since we are rotating about the ~y-axis, we need to turn the function from y = x3 to a function

of x with respect to y. This is done by writing x = 3
√
y. We get

V = π

∫ 8

0
A(y)dy = π

∫ 8

0
y

2
3dy = π[

3

5
y

5
3 ]80 =

96π

5
.

7.3 Cylindrical Shells

Consider the problem of computing the volume of a cylindrical shell of thickness ∆r and height h.

We can write the shell as the difference of two cylinders, one with radius r1 and the other with

radius r2, having thikness ∆r = r1 − r2. To compute the volume in this case then we can subtract

the volumes of the two cylinders. We have

V = V1 − V2

= πr2
1h− πr2

2h

= πh(r−1 r
2
2)

= πh(r1 + r2(r1 − r2)

= 2πh
r1 + r2

2
∆r.

So, we have written the volume V of the shell as 2π multiplied by height h, and average radius of

the shell, which is r1+r2
2 , multiplied the radius difference ∆r.

Now, when S is a solid obtained through the rotation of a function f(x) about the ~y-axis, we can

approximate the volume by several cylindrical shells, whose volume we know to compute, following

the previous reasoning. This approximation takes the form

V ≈
∑
i

Vi =
∑
i

2πx∗i f(x∗i )∆x.
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We can therefore define the volume of the solid of rotation S by using the formula that turns

the previous approximation into an integral:

V = 2π

∫ b

a
xf(x)dx. (7.1)

As a matter of fact, this does not need to be taken as a definition, but it can actually be proved.

Example 7.3.1. Consider the solid obtained by rotating the region between the function y =

2x2 − x3 and y = 0 about the ~y-axis. We want to compute the volume of it

To do so, we use Equation (7.1). To apply the equation we need to find the interval of integration.

This done by observing that 2x2 − x3 = 0 at x = 0 and x = 2.

We have

V = 2π

∫ 2

0
xf(x)dx

= 2π

∫ 2

0
x(2x2 − x3)dx

= 2π

∫ 2

0
[2x3 − x4]dx

= 2π[
1

2
x4 − 1

5
x5]20

=
16

5
π.

7.4 Work

According to Newton’s second law of motion, the force applied to an object to move it along a

straight line is given by the formula

F = ma = m
d2s

dt2
, (7.2)

where m is the mass of the object, a(t) represents the acceleration and s(t) the space. The measure

of unit of force, is given by mass times space per squared time. In the International System of Units,

this is given by kilograms (kg) times meters (m) per seconds (s) squared. The force is measured in

newtons, N , and we have N = kg ·m/s2. If the acceleration of the particle is constant, then the

work done is defined to be the product of force times space:

W = Fd.

Work is measured in joules J , and it corresponds to netwons times meters: J = N ·m.

One natural question arises: How do we define the notion of work when the acceleration (i.e.

for nonrelativistic speeds the force) is not constant? This is defined as an integral:

W =

∫ b

a
f(x)dx,

where f(x) is the force acting on the object at the space point x.
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Example 7.4.1. Assume that a particle is acted upon by a force depending on the particle’s

distance from the origin with equation f(x) = x2 + 2x, where x indicates distance from the origin.

How much work is done to move the particle from x = 1 to x = 3?

We need to integrate the function f(x) from 1 to 3. We have

W =

∫ 3

1
f(x)dx =

∫ 3

1
(x2 + 2x)dx = [

x3

3
+ x2]31 = 18− 4/3 J.

Example 7.4.2. Hooke’s Law states that the force acting on a loose end of a spring subject to a

stretch of x units is proportional to x:

f(x) = kx,

where k is a constant depending only on the spring.

Suppose that we know that the force on the loose spring which is stretched by 5 cm is 10N .

Assume that the lenght of rest of the spring is 10 cm. What is the work done to stretch the spring

from 10 cm to 18 cm?

Since the force for a stretch of 5 is given by f(x) = kx, we have 10N = k · 5 cm, from which we

get k = 2N/cm. Now we can compute the work. To stretch the spring from 10 cm to 18 cm, we

need to produce a stretch of 0 to 8 cm. This gives us an integral from 0 to 8. The force f(x) = 2x,

since k = 2N/cm. We have

W =

∫ 8

0
f(x)dx = 2

∫ 8

0
x = 2[x2/2]80 = 64 J.

7.5 Mean Value Theorem for Integrals

The average of a discrete number of points is obtained by summing all the points together and

dividing by the total number of points. For values y1, . . . , yn we have

ȳ =
y1 + · · ·+ yn

n
,

where ȳ indicates the average.

Suppose now that we have a function f(x) defined over the interval [a, b]. We want to compute

the average of the n points f(x1), . . . , f(xn) where xi are sampled in the interval [a, b] with distance

between two consecutive points given by ∆x. The number ∆x satisfies

∆x =
b− a
n

.

So, the average is given by

f̄(x) =
f(x1) + · · ·+ f(xn)

n
=
f(x1) + · · ·+ f(xn)

b−a
∆x

=
f(x1) + · · ·+ f(xn)

b− a
∆x.

This is a Riemann sum!

Therefore, it makes sense to define the average of the function f on the interval [a, b] as

f̄ =
1

b− a

∫ b

a
f(x)dx.

The following result is called the Mean Value Theorem for Integrals.
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Theorem 7.5.1. Let f be continuous on [a, b]. Then there exists a number c in [a, b] such that

f(c) =
1

b− a

∫ b

a
f(x)dx.

Proof. Define the function F (x) =
∫ x
a f(t)dt. From Theorem 6.5.1, we know that F is differentiable

and that F ′(x) = f(x). From the Mean Value Theorem we have that there exists a point c in [a, b]

such that

F ′(c) =
F (b)− F (a)

b− a
.

Now, F ′(c) = f(c), F (a) =
∫ a
a f(x)dx = 0 and F (b) =

∫ b
a f(x)dx. This completes the proof.



Chapter 8

Techniques of Integration

The only approach to integration that we have considered so far is substitution. At this point, we

can integrate functions only in some special cases. Namely, either when we are given a function

whose antiderivative is known to us (e.g. f(x) = sin(x)), or when we can recognize a multiplication

by a factor whose antiderivative is known to us. In the latter case, we can somehow “reverse” the

chain rule and obtain an antiderivative. This is the substitution rule. Obviously, it is not very

common to fall in either of these situations. We will develop further approaches to integration that

combined with the previous methods will allow us to integrate complicated functions.

8.1 Integration by Parts

While substitution can be considered as the inverse of the chain rule, integration by parts is a

converse to the Leibniz rule (the product rule).

Method 8.1.1 (Integration by Parts). Let f and g be two continuously differentiable functions.

Then the following equality holds∫
[f(x)g′(x)]dx = f(x)g(x)−

∫
[f ′(x)g(x)]dx. (8.1)

For definite integrals, the previous equation gives∫ b

a
[f(x)g′(x)]dx = f(b)g(b)− f(a)g(a)−

∫ b

a
[f ′(x)g(x)]dx. (8.2)

Proof. The product rule for f and g gives

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x). (8.3)

Taking the integral of boths sides of Equation (8.3) gives

f(x)g(x) =

∫
[f ′(x)g(x)]dx+

∫
[f(x)g′(x)]dx, (8.4)

where we used the fact that the integral of a derivative is just equal to the function that is being

integrated, so that the integral and the derivative sybols “cancel” each other. To be precise, one

should also include an integration constant, but since on the right hand side we have two more
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integrals (which have integration constants as well), this can be absorbed in the remaining integrals.

Rearranging terms in Equation (8.4) we obtain∫
[f(x)g′(x)]dx = f(x)g(x)−

∫
[f ′(x)g(x)]dx,

which completes the proof of the first part. The second part follows from applying Equation (8.1)

and the Fundamental Theorem of Calculus (part 2).

Integration by parts allows us to integrate functions that until now were difficult for us to

integrate (in a systematic way).

Example 8.1.2. Consider the integral
∫
xexdx. We want to use integration by parts to solve this

integral, since substitution is not really helpful here.

Let us set g′(x) = ex and f(x) = x in Equation (8.1). This choice is motivated by the fact that

we know how to “undo” the derivative g′(x), so we know how to get g(x), which is g(x) = ex. Also,

when we differentiate f(x), we will get something much simpler: f ′(x) = 1. Equation (8.1) gives

us ∫
xexdx = xex −

∫
1 · exdx.

The last integral now is simple to solve:
∫
exdx = ex + c. So, we have found∫

xex = xex − ex + c.

Example 8.1.3. We want to compute
∫

lnx dx. Observe that while we do know how to differentiate

lnx, we do not really know any function whose derivative is lnx.

Here we apparently only have one function, so that it seems that applying integration by parts

is not possible. Of course, we can think of having a 1 multiplying lnx, and therefore, we can write

the integral as ∫
1 · lnx dx.

Here we can think of g′(x) = 1 and f(x) = lnx, since we know how to undo the derivative g′(x) = 1,

which just gives us a g(x) = x. Applying Equation (8.1) we have∫
1 · lnx dx = x lnx−

∫
x · ( d

dx
lnx)dx.

Since d
dx lnx = 1

x , we get ∫
lnx dx = x lnx−

∫
1dx = x lnx− x+ c.

The following is a very interesting example where integration by parts does not seem to be

applicable or helpful. We will see how to bypass the issue.

Example 8.1.4. We want to compute now the integral
∫
ex sinx dx. Here, both functions ex and

sinx could be considered as the differentiated function g′(x). However, the problems seems to be

the fact that once you choose either of them to be g′(x), and the other one to be f(x), taking the
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derivative f ′(x) does not seem to result in a solvable integral. Let us see how to deal with this

problem.

First, we just set f(x) = ex, and g′(x) = sinx. Then, we apply Equation (8.1) to get∫
ex sinx dx = −ex cosx+

∫
ex cosx dx. (8.5)

As expected, the right hand side of the previous equation is not any simpler than the integral we

started with. We now apply integration by parts again to
∫
ex cosx dx and see what happens.

Again, we set f(x) = ex and g′(x) = cosx. We obtain∫
ex cosx dx = ex sinx−

∫
ex sinx dx. (8.6)

Substituting Equation (8.6) in Equation (8.5) we find∫
ex sinx dx = −ex cosx+ ex sinx−

∫
ex sinx dx,

which can be written upon rearranging terms as

2

∫
ex sinx dx = −ex cosx+ ex sinx.

Finally, this gives us ∫
ex sinx dx = 1/2(−ex cosx+ ex sinx) + c,

where we have added the integration constant in the last step.

Therefore, applying integration by parts twice, we have been able to integrate the function

ex sinx.

8.2 Trigonometric integrals and trigonometric substitutions

We have already seen how to use the rules of differentiation of trigonometric functions to obtain

some direct integrals. However, we generally need to use a combination of known trigonometric in-

tegrals, integration by parts and by substitution to be able to integrate more complex trigonometric

functions. We begin with an interesting example.

Example 8.2.1. Consider the integral
∫

cos3(x)dx.

We cannot apply a substitution in this case because the derivative of the cosine function does

not appear. However, we know that the fundamental relation of trigonometry cos2(x)+sin2(x) = 1

allows us to rewrite the square of a cosine in terms of sine. We can therefore proceed as follows.∫
cos3(x)dx =

∫
cos2(x) · cos(x)dx

=

∫
(1− sin2(x)) cos(x)dx

=

∫
cos(x)dx−

∫
sin2(x) cos(x)dx.
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We already know how to integrate cos(x), so the first term is easily solved. For the second term,

observe that cos(x) is the derivative of sin(x), so that we can perform the substitution u = sin(x),

and then du
dx = d

dx(sin(x)) = cos(x). We therefore have (by substitution):∫
sin2(x) cos(x)dx =

∫
u2du

= u3/3 + c

=
1

3
sin3(x) + c,

where in the last step we have substituted u = sin(x) back again. We therefore have∫
cos3(x)dx = sin(x)− 1

3
sin3(x) + c.

Example 8.2.2. We now consider a higher power of a trigonometric function. We compute∫
sin4(x)dx.

To solve this integral, we use a combination of integration by parts and trigonometric integrals.

We first observe that
∫

sin4(x)dx =
∫

sin3(x) sin(x)dx. Then, we use the fact that sin(x) is the

derivative of − cos(x) to integrate by parts and get∫
sin4(x)dx =

∫
sin3(x) sin(x)dx

= − sin3(x) cos(x) + 3

∫
sin2(x) cos2(x)dx.

At this point it seems that we did not go really that far, since the last integral seems even more

complicated than the initial one. However, rewriting cos2(x) = 1 − sin2(x) we can use the same

trick that we used for the integral of ex sin(x).

In fact, with cos2(x) = 1− sin2(x) we have∫
sin4(x)dx = − sin3(x) cos(x) + 3

∫
sin2(x) cos2(x)dx

= − sin3(x) cos(x) + 3

∫
sin2(x)(1− sin2(x))dx

= − sin3(x) cos(x) + 3

∫
sin2(x)dx− 3

∫
sin4(x))dx,

from which we get

4

∫
sin4(x)dx = − sin3(x) cos(x) + 3

∫
sin2(x)dx.

Therefore, our integral has reduced now to∫
sin4(x)dx = −1

4
sin3(x) cos(x) +

3

4

∫
sin2(x)dx.

In other words, our problem is reduced to solving
∫

sin2(x)dx. Another integration by parts

shows that
∫

sin2(x)dx = 1
2(x− sin(x) cos(x)) + c.

We have therefore obtained∫
sin4(x)dx = −1

4
sin3(x) cos(x) +

3

8
(x− sin(x) cos(x)) + c.
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We now consider the general approach to solve integrals where products of sine and cosine

functions appear. This has three subcases.

Method 8.2.3. We want to solve integrals of type
∫

sinm(x) cosn(x)dx.

(i) If n is an odd number, we write cosn(x) = cosn−1(x) cos(x). Now, n − 1 is even, so it

can be written as n − 1 = 2k for some number k. We therefore have for our integral∫
sinm(x) cosn(x)dx =

∫
sinm(x) cos2k(x) cos(x)dx =

∫
sinm(x)(cos2(x))k cos(x)dx. Since

cos2(x) = 1− sin2(x), we can now solve this integral with a substitution of type u = sin(x).

(ii) When the m is odd, we proceed in the same case as above, but writing sinm(x) as product of

type (sin2(x))k sin(x). This integral can then be solved using a substitution of type u = cos(x).

(iii) If both n and m are even, we can then use the half-angle formulas to rewrite even powers of

sines and cosines as sin2(x) = 1
2(1− cos(2x)) and cos2(x) = 1

2(1 + cos(2x)).

In the next example, we show that even when the function that is being integrated is not

trigonometric we can use a trigonometric substitution. This is a very useful trick, and it basically

consists in using the integration by substitution in a reversed way with respect to how we have

used so far.

Example 8.2.4. We want to compute
∫ √

1−x2
x2

dx.

We see that if x = sin(θ), we would have
√

1− sin2(θ) =
√

cos2(θ). This would be quite

convenient, because we would be able to remove the square root. Setting x = sin(θ) we also have
dx
dθ = d

dθ sin(θ) = cos(θ). So, using this substitution we will need to replace dx by dx = cos(θ)dθ.

We now have∫ √
1− x2

x2
dx =

∫ √
1− sin2(θ)

sin2(θ)
cos(θ)dθ

=

∫ √
cos2(θ)

sin2(θ)
cos(θ)dθ

=

∫
cos2(θ)

sin2(θ)
dθ.

Now, observe that cos2(θ)

sin2(θ)
= csc2(θ) − 1, since we have csc2(θ) − 1 = 1

sin2(θ)
− 1 = 1−sin2(θ)

sin2(θ)
=

cos2(θ)+sin2(θ)−sin2(θ)

sin2(θ)
= cos2(θ)

sin2(θ)
. So, we have

∫ √
1− x2

x2
dx =

∫
cos2(θ)

sin2(θ)
dθ

=

∫
(csc2(θ)− 1)dθ

= − cot(θ)− θ + c

= − cot(arcsin(x))− arcsin(x) + c.

This completes our computation. In fact, one can also show using the trigonometric formulas that

cot(θ) =
√

1−x2
x2

, which gives a simpler form to the previous solution.
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Expression Substitution Identity√
a2 − x2 x = a sin θ (−π

2 ≤ θ ≤
π
2 ) 1− sin2 θ = cos2 θ√

a2 + x2 x = a tan θ (−π
2 < θ < π

2 ) 1 + tan2 θ = sec2 θ√
x2 − a2 x = sec θ, (0 ≤ θ < π

2 or π ≤ θ < 3π
2 ) sec2 θ − 1 = tan2 θ

Table 8.1: Trigonometric substitutions.

There a few useful rules for substitutions as in the example above. We summarize them in

Table 8.1.

In the table, we report the type of expressions to solve by trigonometric substitution, the

substitution, where we also give the domain of definition of the angle θ, and the type of identity

that is used after substitution in order to simplify the integral. One can see that Example 8.2.4

uses the first type of substitution.

Example 8.2.5. We want to compute
∫

1
x2
√
x2+4

dx.

From the table we see that this is an integral whose trigonometric substitution requires the use

of tangent.

Therefore, we set x = 2 tan θ. From this substitution we also find that dx
dθ = d

dθ (2 tan θ) =

2 sec2 θ. We therefore have dx = 2 sec2 θdθ. Using the identity given in the table, we also see that√
4 + 4 tan θ =

√
4 sec2 θ = 2 sec θ. Our integral becomes∫

1

x2
√
x2 + 4

dx =

∫
1

4 tan2 θ
√

4 tan2 θ + 4
2 sec2 θdθ

=

∫
sec2 θ

4 tan2 θ sec θ
dθ

=
1

4

∫
sec θ

tan2 θ
dθ.

Since sec θ = 1
cos θ and tan θ = sin θ

cos θ , we have sec θ
tan2 θ

= cos θ
sin2 θ

. We therefore need to solve the integral∫
sec θ

tan2 θ
dθ. To achieve this we can perform the substitution u = sin θ, since cos θ is the derivative

of sin θ. We get
∫

sec θ
tan2 θ

dθ = − 1
u + c.

Therefore, for the initial integral, we have∫
1

x2
√
x2 + 4

dx =
1

4

∫
sec θ

tan2 θ
dθ

= −1

4

1

u
+ c

= −1

4

1

sin θ
+ c.

This solves the integration problem. As in the previous example, we can obtain the solution in terms

of the original variable x by using the trigonometric identities. We have that x = 2 tan θ, which

means that we can construct a right triangle where θ is one of the angles, x is the side opposite

to θ, 2 is the side adjacent to θ, and
√
x2 + 4 is the hypotenuse. In this case,

√
x2 + 4 · sin θ = x,

from which it follows that cscxθ = 1
sin θ =

√
x2+4
x . So, the answer can be written in terms of x as∫

1
x2
√
x2+4

dx = −
√
x2+4
4x + c.
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8.3 Partial Fractions

The method of partial fractions allows us to integrate rational functions, i.e. functions of type

f(x) = P (x)
Q(x) where numerator and denominator, P (x) and Q(x) respectively, are polynomials.

Polynomials are described by a formula of type P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0,

where an 6= 0. The number n here is called degree of P , and indicated by the symbol deg(P ). Our

problem is to obtain
∫ P (x)
Q(x)dx, where both P and Q are polynomials.

Suppose first that the numerator has degree larger than or equal to the degree of the denomina-

tor, i.e. deg(P ) ≥ deg(Q). It is a known fact that we can write this quotient as P (x)
Q(x) = S(x)+ R(x)

Q(x) ,

where both S(x) and R(x) are polynomials, and R(x) has degree lower than the degree of Q(x) (if

degQ > 0 also degS < degQ). The polynomial R(x) is called the remainder of the long division.

Example 8.3.1. Compute:
∫
x3+x
x−1 dx.

Observe that the numerator has a power larger than the denominator. So, we can use the long

division to write x3+x
x−1 = S(x)+ R(x)

x−1 . In other words, we need to find S and R. Using long division,

here we find that S(x) = x2 + x+ 2, and R(x) = 2. Therefore, we have∫
x3 + x

x− 1
dx =

∫
[x2 + x+ 2 +

2

x− 1
]dx

=
x3

2
+
x2

2
+ 2x+ 2 ln |x− 1|+ c.

Now on, we will consider fractions where the degree of the numerator is smaller than the degree

of the denominator. In fact, if this is not the case, by long division we can reduce our integration

to an integral of type ∈ S(x)dx+ ∈ R(x)
Q(x)dx, where the first integral is eqsily solvable, and the

secon integral is a fraction where the degree of the numerator is smaller than the degree of the

denominator.

The previous example is simple because the denominator does not contain higher powers of x.

In general, this is not the case. However, we might want to factor the denominator Q(x) as much

as possible.

In general, a polynomial such as Q(x) can always be written as a product of linear terms and

irreducible quadratic terms. Linear terms are polynomials of type ax+b, while irreducible quadratic

terms are of type ax2 + bx+ c, where b2 − 4ac < 0. Observe that if b2 − 4ac ≥ 0, we can factor the

quadratic term into a product of two linear terms. Depending on how Q(x) factors in a product of

linear and quadratic terms, there are several cases in which we can split our approach to integration.

8.3.1 Q(x) is a product of linear factors with no repetitions

If Q(x) is just a product of linear factors, with no linear factor repeated, we have Q(x) = (a1x +

b1)(a2x+ b2) · · · (akx+ bk) for some numbers a1, a2, . . . ak, and b1, b2, . . . bk. In such a case, we can

decompose the fraction as R(x)
Q(x) = A1

a1x+b1
+ A2

a2x+b2
+ · · ·+ Ak

akx+bk
, for constants Ai that we need to

find.

Example 8.3.2. We want to compute
∫

x2+2x−1
2x3+3x2−2x

dx.

The denominator Q(x) = 2x3 + 3x2 − 2x factors into linear terms, since 2x3 + 3x2 − 2x =

x(2x−1)(x+2). We want to write x2+2x−1
2x3+3x2−2x

= A
x + B

2x−1 + C
x+2 . Taking the common denominator
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on the right hand side, we find

x2 + 2x− 1

2x3 + 3x2 − 2x
=
A(2x− 1)(x+ 2) +Bx(x+ 2) + Cx(2x− 1)

x(2x− 1)(x+ 2)
.

This equality holds if and only if the numerators are the same, so that we have found that

x2 +2x−1 = A(2x−1)(x+2)+Bx(x+2)+Cx(2x−1) = (2A+B+2C)x2 +(3A+2B−C)x−2A.

This produces a system of type 
2A+B + 2C = 1

3A+ 2B − C = 2

−2A = −1

We therefore find A+ 1/2, B = 1/5 and C = −1/10. We can therefore write the integral as∫
x2 + 2x− 1

2x3 + 3x2 − 2x
dx =

∫
[

1

2x
+

1

5(2x− 1)
− 1

10(x+ 2)
]dx

=
1

2
ln |x|+ 1

10
ln |2x− 1| − 1

10
ln |x+ 2|+ c.

8.3.2 Q(x) is a product of linear factors with repetitions

In this case, Q(x) is again a product of linear factors, but some of these factors are repeated. We

can therefore write Q(x) as:

Q(x) = (a1x+ b1)r1(a2x+ b2)r2 · · · (akx+ bk)
rk ,

where at least one of the numbers r1, r2, . . . , rk is larger than 1. Suppose that we have r1 strictly

larger than 1, for the sake of simplicity. Then, in the fraction decomposition given above, we have

to replace the term A1
a1x+b1

by the fractions A11
a1x+b1

+ A12
(a1x+b1)2

+ · · ·+ A1r1
(a1x+b1)r1 . We therefore have

P (x)

Q(x)
=

A11

a1x+ b1
+

A12

(a1x+ b1)2
+ · · ·+ A1r1

(a1x+ b1)r1
+ · · ·

· · ·+ Ak1

akx+ b1
+

Ak2

(akx+ bk)2
+ · · ·+ Akrk

(akx+ bk)rk
.

In other words, for all those factors where the linear factor appears only once, we will add a factor

as before of type At
(atx+bt)

, while whenever we have a linear term that appears multiple times, we

add several fractions of type A11
a1x+b1

+ A12
(a1x+b1)2

+ · · · + A1r1
(a1x+b1)r1 . The constants Aij need to be

obtained through a direct computation as in Example 8.3.2.

We show this method with an example.

Example 8.3.3. We want to compute the integral:
∫

x+2
x3−x2−x+1

dx.

First of all, we need to factor the denominator, and understand its factorization into products

of linear and quadratic factors. We see immediately that x = 1 is a root of Q(x) = x3−x2−x+ 1.

So, the term x − 1 divides Q(x). From long division we see that Q(x) = (x − 1)(x2 − 1). Since
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x2 − 1 = (x − 1)(x + 1), we have found that Q(x) = (x − 1)2(x + 1), which shows that Q factors

into linear terms, one of which is repeated twice. It follows that we seek to write the fraction as

x+ 2

x3 − x2 − x+ 1
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1
.

Doing the common fraction we have

x+ 2

x3 − x2 − x+ 1
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1

=
A(x− 1)(x+ 1) +B(x+ 1) + C(x− 1)2

(x− 1)2(x+ 1)

=
Ax2 −A+Bx+B + Cx2 + C − 2Cx

(x− 1)2(x+ 1)

=
(A+ C)x2 + (B − 2C)x+ (−A+B + C)

(x− 1)2(x+ 1)
.

This gives us the system 
A+ C = 0

B − 2C = 1

−A+B + C = 2

which has the unique solution −A = C = 1
4 , B = 3

2 . Therefore, our fraction is written as

x+ 2

x3 − x2 − x+ 1
= − 1

4(x− 1)
+

3

2

1

(x− 1)2
+

1

4(x+ 1)
.

The integral is therefore rewritten as∫
x+ 2

x3 − x2 − x+ 1
dx = −

∫
1

4(x− 1)
dx+

3

2

∫
1

(x− 1)2
dx+

∫
1

4(x+ 1)
dx

= −1

4
ln |x− 1| − 3

2

1

x− 1
+

1

4
ln |x+ 1|+ c.

8.3.3 Q(x) contains irreducible quadratic factors without repetitions

Let us now consider the case when the factorization of Q(x) contains quadratic factors of type

ax2 + bx + c where b2 − 4ac < 0, and therefore we cannot decompose it into a product of linear

factors. In this case, in addition to the sum of fractions considered before, we also need to consider

fractions of type Ax+B
ax2+bx+c

, where A and B are constants that need to be found. Of course, we

need to understand how to integrate a fraction of type Ax+B
ax2+bx+c

, since once we find A and B,

our integral will contain a summand of this type, which needs to be integrated. Observe that
Ax+B

ax2+bx+c
= Ax

ax2+bx+c
+ B

ax2+bx+c
. The first summand is easy to integrate (why?). The second

summand is obtained through a trigonometric integration. First one completes the square to have

a denominator of type 1
x2+d2

, and then this integral is given by∫
1

x2 + d2
=

1

d
tan−1(

x

d
) + c. (8.7)

We illustrate this with a computational example.
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Example 8.3.4. We want to compute
∫

2x2−x+4
x3+4x

dx.

First, we need to factor the denominator. We have x3 + 4x = x(x2 + 4). The quadratic term

x2 + 4 does not simplify any further, since it does not have any real roots or, equivalently, the

discriminat ∆ = b2 − 4ac < 0. We therefore have a quadratic term, and a linear term. We already

know how to deal with linear terms, but we need to apply the procedure described right above this

example to the quadratic terms.

We seek to find constants A,B and C such that

2x2 − x+ 4

x3 + 4x
=

A

x
+
Bx+ C

x2 + 4
.

Doing the common fraction we obtain

2x2 − x+ 4

x3 + 4x
=

(A+B)x2 + Cx+ 4A

x(x2 + 4)
.

Equating the terms in the numerator, and solving for A,B and C we obtain A = 1, B = 1 and

C = −1. Therefore our integral has become

2x2 − x+ 4

x3 + 4x
dx =

∫
1

x
dx+

∫
x− 1

x2 + 4
dx

=

∫
1

x
dx+

∫
x

x2 + 4
dx−

∫
1

x2 + 4
dx

= ln |x|+ 1

2
ln(x2 + 4)− 1

2
tan−1(

x

2
) + c,

where we have performed the substitution u = x2 + 4 for the second integral, and removed the

absolute value in the logarithm because x2 + 4 is always strictly positive.

8.3.4 Q(x) contains irreducible quadratic factors with repetitions

In this case we have Q(x) factoring into a product where some term of type (ax2 +bx+c)r appears,

where r > 1 and b2 − 4ac < 0. In this case, similar to how we proceeded for the case of repeated

linear factors we have to add fractions of type A1x+B1
ax2+bx+c

+ A2x+B2
(ax2+bx+c)2

+ · · · + Arx+Br
(ax2+bx+c)r

. Then,

we have to determine the coefficients as before. These terms can all be integrated by possibly

completing the square at the denominator, and using a substitution so, once we reach such a form

for our fraction, we can integrate.

Example 8.3.5. We want to compute
∫

x2+2
x(x2+1)2

dx.

Our denominator is already factored, and we know that the quadratic term cannot be simplified

any further. We seek to find constants such that the equality

x2 + 2

x(x2 + 1)2
=

A

x
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
.

As usual, by doing the common fraction and then equating the terms we obtain a system, which

gives us A = 2 = −B, C = E = 0, and D = −1. We therefore have for the integral∫
x2 + 2

x(x2 + 1)2
dx =

∫
2

x
dx−

∫
x

x2 + 1
dx−

∫
x

(x2 + 1)2
dx

= 2 ln |x| − 1

2
ln(x2 + 1) +

1

2
(x2 + 1)−1 + c.
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8.4 Numerical Integration

In most of practical applications, e.g. in physics, computer science and engineering, it is not

convenient, or even possible, to perform exact integration. This problem requires a numerical

approach to integration, where we are able to approximate integrals without exactly computing

them.

Recall, that the definition of (definite) integral consist of a limit of approximations (the Riemann

sums), which become increasingly accurate when the number of subintervals grows. Therefore,

taking a Riemann sum with n subintervals is a way of approximating an integral. When we

introduced integrals we discussed three simple choices for the computation of Riemann sums, namely

left, right and mid rules. We use them to obtain two important approaches to numerical integration:

Midpoint rule, and trapezoidal rule.

8.4.1 Midpoint Rule

For the midpoint rule, for each subinterval of size ∆x we pick the point in the middle, and use this

to create our Riemann sum. Suppose that we want to approximate the integral
∫ b
a f(x)dx. Then,

we divide [a, b] into n subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn], where the points xi are chosen

inside [a, b] and are assumed to be equally spaced. Then, we set x̄i = xi−xi−1

2 for all i = 1, 2, . . . , n.

The corresponding Riemann sum is then given by∫ b

a
f(x)dx ≈ ∆x[f(x̄1) + · · ·+ f(x̄n)] := Mn, (8.8)

where ∆x = b−a
n is the size of the subintervals.

When performing an approximated computation, one is interested in understandig that we

make in our approximation, or better to say an estimate for the error. This means that we want

to understand what is the largest error that we can make when performing numerical integration

through the midpoint rule. The error is defined as

EM = |
∫ b

a
f(x)dx−Mn|.

One can prove (but we will not do so here) that if f(x) is twice differentiable and |f ′′(x)| ≤ K for

all x in [a, b] and for some number K, then we have the following error estimate for the midpoint

rule:

EM ≤
K(b− a)3

24n2
.

This shows that as we increase the number n of points used to subdivide the interval [a, b], the

precision of our integration increases, since the error EM becomes smaller and smaller.

8.4.2 Trapezoidal Rule

The trapezoidal rule is defined as the average of the left and right Riemann sums. Recall that if

n is the number of subintervals we divide [a.b] into, then the left and right Riemann sums for the
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integral
∫ b
a f(x)dx are given by∫ b

a
f(x)dx ≈ ∆x[f(x0) + f(x1) + · · ·+ f(xn−1)] =: Ln (8.9)∫ b

a
f(x)dx ≈ ∆x[f(x11) + f(x2) + · · ·+ f(xn)] =: Rn. (8.10)

The trapezoidal rule uses both these estimates for
∫ b
a f(x)dx, by taking their average. So, we have∫ b

a
f(x)dx ≈ Ln +Rn

2
(8.11)

=
1

2
{∆x[f(x0) + f(x1) + · · ·+ f(xn−1)] + ∆x[f(x11) + f(x2) + · · ·+ f(xn)]}(8.12)

=
∆x

2
[f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)]. (8.13)

Again, we are interested in the error

ET = |
∫ b

a
f(x)dx− Ln +Rn

2
|.

Similarly to the case of the midpoint rule, we have a bound on how big the error can be in

approximating an integral with the trapezoidal rule. For f(x) such that |f ′′(x)| ≤ K for all x in

[a, b], and some K, we get

ET ≤
K(b− a)3

12n2
.

Once again, as n grows, our error becomes smaller and smaller.

8.4.3 Cavalieri-Simpson’s Rule

This rule was discovered by Bonaventura Cavalieri in the 1600’s, and rediscovered by Thomas

Simpson in the 1700’s. The method consists of approximating a given function between two points

using a parabola, and performing integration using a rule for the parabola. If the points used are

close enough, the result can be quite accurate.

We divide the interval [a, b] into n subintervals of the same length, as before, with the extra con-

straint that n be even. We also set ∆x = b−a
n . We have the n+1 points a = x0, x1, . . . , xn−1, xn = b

in the interval [a, b] corresponding to the chosen partition. Between each pair of points (xi, f(xi))

and (xi+1, f(xi+1)) we approximate the function f by means of a parabola in order to perform

integration.

To do so, we consider triple of points (xi, f(xi)), (xi+1, f(xi+1)) and (xi+2, f(xi+2)), and find

the equation of a parabola passing through them. We derive the equations for the case where the

points are centered around x = 0, since upon translating this result, we can then generalize it to

arbitrary triples. So, we assume we have (−h, f(−h))), (0, f(0)) and (h, f(h)). A parabola has the

form y = ax2 + bx + c, where a, b, c are numbers chosen so that the parabola passes through the

three points.
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We can therefore compute the integral of the parabola from −h to h and obtain∫ h

−h
(ax2 + bx+ c)dx = 2

∫ h

0
(ax2 + c)dx

= 2[a
x3

3
+ cx]h0

= 2(a
x3

3
+ cx)

=
h

3
(2ah2 + 6c),

where in the second equality we have used the fact that
∫ h
−h bxdx = 0 (the function is odd!), and have

therefore removed bx from the integration, along the fact that
∫ h
−h(ax2 + c)dx = 2

∫ h
0 (ax2 + c)dx,

since the function ax2 + c is even.

using the fact that the parabola passes through the points (−h, f(−h))), (0, f(0)) and (h, f(h)),

we find the system
f(−h) = a(−h)2 − bh+ c

f(0) = c

f(h) = ah2 + bh+ c .

By summing first equation, 4 times second equation, and third equation we obtain the equality

f(−h) + 4f(0) + f(h) = 2ah2 + 6c, which is precisely the term in the parenthesis appearing in the

evaluation of the integral above. We can therefore write the integral above as∫ h

−h
(ax2 + bx+ c)dx =

h

3
(f(−h) + 4f(0) + f(h)).

When dealing with arbitrary points (xi, f(xi)), (xi+1, f(xi+1)) and (xi+2, f(xi+2)), the procedure is

precisely the same, just replacing xi to −h, xi+1 to 0, and xi+2 to h. So we get in general an area

of ∫ xi+2

xi

(ax2 + bx+ c)dx =
h

3
(f(xi) + 4f(xi+1) + f(xi+2)).

When computing the full integral
∫ b
a f(x)dx, we can therefore approximate it by summing the

integrals between all pairs of even points x0 to x2, x2 to x4 and so on, using the integration formula

obtained above. In fact, observe that we will have for each subinterval a triple of points exactly as

above. We therefore obtain∫ b

a
f(x)dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)],

where we have used ∆x instead of h, since this is the length of the subintervals.

Example 8.4.1. Let us consider the integral
∫ 2

1
1
xdx. We take n = 10, which gives us ∆x = 0.1.

Here we have x0 = 1, x1 = 1.1, x2 = 1.2 and so on up to x9 = 1.9 and x10 = 2. Using the

Cavalieri-Simpson’s rule we have the approximation∫ 2

1

1

x
dx ≈ 0.1

3
[1 +

4

1.1
+

2

1.2
+

4

1.3
+

2

1.4
+

4

1.5
+

2

1.6
+

4

1.7
+

2

1.8
+

4

1.9
+

1

2
] ≈ 0.693150.
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Observe that the precise result, after integrating analytically, is
∫ 2

1
1
xdx = ln(2) − ln(1) = ln(2) ≈

0.69314718056. So, the Cavalieri-Simpson’s rule gives a very good approximation of the integral.

Similarly to the case of midpoint and trapezoidal rules, we are interested in finding error bounds

for the numerical integration. One can prove that the error

ECS ≤
K(b− a)5

180n4

holds, where K is a number such that |f (4)(x)| ≤ K for all x in [a, b].

8.5 Improper Integrals

Our definition of definite integral was based on the fact that we started with a function that is

defined on a closed and finite interval of type [a, b]. One might ask whether there is a way of

defining, or at least making sense of, integrals on intervals of type [a,∞), or [a, b) etc.

In this section we will see that we can indeed do that. Such integrals are called improper

integrals.

8.5.1 Improper integrals on infinite intervals

We start by considering the case of integrals over infinite intervals, and we consider an example

first. This will make the definition of improper integral very clear.

Example 8.5.1. Let f(x) = 1
x2

. We want to compute the area beneath f(x) between x = 1 and

∞. In other words, we want to compute a reaasonable notion of
∫∞

1 f(x)dx. One natural way to

do this would be to compute
∫ t

1 f(x)dx for an arbitrary t > 1, and then take the limit t −→ ∞ of

the quantity that we obtain. In fact, computing
∫ t

1 f(x)dx would give us a notion of area under

f(x) “up to t”, and then by letting t go to infinity, we consider areas that are larger and larger

without putting a bound on it. Of course, one might intuitively expect that this would give us a

quantity that is infinite in magnitude. However, this is not the case, as we will see shortly.

We compute

A(t) =

∫ t

1

1

x2
dx

= = −1

x
]t1

= 1− 1

t
.

So, the area A(t) is always less than 1! Moreover, when we take the limit t −→ ∞, we get

limt→∞A(t) = limt→∞ 1− 1
t = 1, which is not infinite as one might have expected. This prompts

us to think of the equality (which is a definition)
∫∞

1
1
x2
dx = lim t→∞

∫ t
1

1
x2
dx.

In the previous example, there is an important fact that has appened behind the scenes. We

were able to compute
∫∞

1
1
x2
dx for all t > 1. This is important, because we need to be able to

define A(t). We pose now the following definition, based on the previous observations.
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Definition 8.5.2. Suppose that
∫ t
a f(x)dx exists for all t ≥ a. Then, we define∫ ∞

a
f(x)dx = lim

t→∞

∫ t

a
f(x)dx,

in the assumption that the limit exists (either finite or infinite). We also similarly define
∫ b
−∞ f(x)dx.

When the integral is finite, we say that the improper integral is convergent, while when the limit

exists but is infinite, we say that the improper integral is divergent, and we write
∫∞
a f(x)dx = ±∞

(depending on the sign). If the limit does not exist at all, then one says that the integral is

oscillatory divergent, and we do not assign any value to
∫∞
a f(x)dx, either finite or infinite.

Moreover, if
∫ a
−∞ f(x)dx and

∫∞
a f(x)dx are finite, i.e. the integrals are convergent, we define∫ ∞

−∞
f(x)dx =

∫ a

−∞
f(x)dx+

∫ ∞
a

f(x)dx.

Example 8.5.3. Let us now compute the integral
∫∞

1
1
xdx, if it exists. We compute∫ ∞

1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx

= lim
t→∞

ln |x|]t1
= lim

t→∞
(ln t− ln 1)

= lim
t→∞

ln t

= ∞.

So, this integral is divergent.

More generally, we can compute
∫∞

1
1
xpdx for some p 6= 1. In this case we have∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx

= lim
t→∞

x−p+1

−p+ 1
]t1

= lim
t→∞

1

p− 1
[

1

tp−1
− 1].

Now, observe that if p > 1, we have that 1
tp−1 −→ 0 for t −→ ∞. So, in this case the integral

is convergent and we have
∫∞

1
1
xpdx = 1

1−p . However, when p < 1 we have that 1
tp−1 −→ ∞, and

therefore the integral is divergent to ∞.

Considering also the case p = 1 computed before, we have that
∫∞

1
1
xpdx = 1

1−p when p > 1,

while
∫∞

1
1
xpdx is divergent for p ≤ 1.

8.5.2 Finite non-closed improper integrals

In this case the interval of integration is finite, but since the function is defined over an open or

half-open interval, our function might diverge to ±∞. One can think of the situation where we

want to integrate 1
x between 0 and 1. The idea to treat this situation is similar to the previous

case, and we pose the following definition.
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Definition 8.5.4. Suppose that f is continuous on [a, b), and possibly not defined or discontinuous

at x = b Then, we define∫ b

a
f(x)dx = lim

t→b−

∫ t

a
f(x)dx,

if the limit exists (finite or infinte). A similar definition holds when f is continuous on (a, b], and

it is not defined or it is discontinuous aat x = a. We can pose similar notation for convergent,

divergent, and oscillatory divergent improper integrals.

In addition, when f has a point c of discontinuity or where it is not defined, with c in [a, b], we

can define the integral as∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx.

Example 8.5.5. We compute the integral
∫ 5

2
1√
x−2

dx. Since the function f(x) = 1√
x−2

is not

defined at x = 2, we need to use Definition 8.5.4.

We compute∫ 5

2

1√
x− 2

dx = lim
t→2+

1√
x− 2

dx

= lim
t→2+

2
√
x− 2]5t

= lim
t→2+

2(
√

3−
√
t− 2)

= 2
√

3.

So, the integral is convergent.



Chapter 9

Arc Length, Areas, and Applications

In this chapter we consider further applications of integration to physics and engineering. Before

doing so, we introduce two important concepts, which use integration methods, and then apply

them to some real-world cases.

9.0.1 Arc Length

We know how to find the lenght of curves that are polygons, simply by adding all the lenghts of the

segments that form the polyogon. However, this simply procedure does not apply when the curve

is more general, and is for instance defined by some function through an equation of type y = f(x).

The idea to introduce the notion of length in such more general cases is similar to how we defined

the notion of integral as area under a curve. We reduce the problem to something we know how to

compute, i.e. polygonal curves, and then use them to define the length of a general curve through

a procedure of limit.

Suppose y = f(x) is a curve C defined through a function f which is continuous, and let x be

in [a, b]. We define a polygonal approximation of C by choosing points a = x0, x1, . . . , xn−1, xn = b

on the interval, and taking the corresponding coordinates f(xi) on the curve C. So, we get points

Pi = (xi, f(xi)) along the curve. Now, we can join the points Pi so to obtain a polygonal curve

which approximates the original curve. The approximated length of C, is given by the length of

the polygonal curve as

Ln =

n∑
i=1

|Pi − Pi−1|, (9.1)

where |Pi − Pi−1| indicates the length of the segment joining Pi−1 and Pi. Then, we define the

length of C by taking the limit as n goes to infinity, i.e. we sample more and more points along

the curve so that the polygonal approximation becomes more precise:

L = lim
n→∞

Ln. (9.2)

When f has a continuous, we can derive a more useful formula for Equation (9.2), by rewriting

the terms in Equation (9.1) in a more convenient way. In fact, if ∆xi = xi − xi−1 and ∆yi =

yi − yi−1 = f(xi)− f(xi−1), the distance |Pi − Pi−1| is given by

|Pi − Pi−1| =
√

(xi − xi−1)2 + (yi − yi−1)2 =
√

(∆xi)2 + (∆yi)2. (9.3)
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Applying the Mean Value Theorem we find that

f(xi)− f(xi−1) = f ′(x∗i)(xi − xi−1), (9.4)

for some point x∗i in [xi−1, xi], which gives us

∆yi = f ′(x∗i )∆xi. (9.5)

Since the points xi can be chosen to be equally spaced, we can also drop the subscript i for ∆xi.

We therefore have for Equation (9.3)

|Pi − Pi−1| =
√

(∆x)2 + [f ′(x∗i )∆x]2 (9.6)

=
√

1 + [f ′(x∗i )]∆x, (9.7)

and using this into Equation 9.2, we find

L = lim
n→∞

n∑
i=1

|Pi − Pi−1| (9.8)

= lim
n→∞

n∑
i=1

√
1 + [f ′(x∗i )]∆x (9.9)

=

∫ b

a

√
1 + [f ′(x)]2dx. (9.10)

Equation (9.10) is called the Arc Length formula.

Example 9.0.1. We want to find the lenght of the arc from (1, 1) to (4, 8) on the curve defined

through the equation y2 = x3.

First, since both x and y are positive on the arc between (1, 1) to (4, 8) (the curve lies on the

upper half of the plane), we can simply write y = x
3
2 , by taking square roots of both sides without

introduce any minus sign. Then, we can find the derivative of y with respect to x, since it is needed

in Equation (9.10). We have dy
dx = 3

2x
1
2 . We therefore have

L =

∫ b

a

√
1 + [f ′(x)]2dx

=

∫ 4

1

√
1 +

9

4
xdx.

We now perform the substitution u = 1+ 9
4x and solve the integral, finding L = 1

27(80
√

10−13
√

13).

If the equation of the curve is such that we are able to write x as a function of y, then we can

proceed exactly in the same way as before, but now exchanging the roles of x and y.

Example 9.0.2. Consider the equation of the parabola x = y2. Suppose that we want to compute

the lenght of the arc on the curve between (0, 0) and (1, 1). Since the curve is already given as a

function of x with respect to the variable y, we can apply Equation (9.10) but where the roles of x

and y are exchanged. Observe that dx
dy = 2y.
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We compute

L =

∫ b

a

√
1 + [f ′(y)]2dy

=

∫ 1

0

√
1 + 4y2dy.

To solve this integral, we need to perform a trigonometric substitution. In fact, if we set 2y = tan θ,

i.e. y = 1
2 tan θ, we find dy = 1

2

2
θdθ, and also

√
1 + 4y2 =

√
1 + tan2 θ = sec θ. Therefore, we need

to compute the integral

L =

∫ 1

0

√
1 + 4y2dy

=
1

2

∫ arctan 2

0
sec3 θdθ

= sec θ tan θ]arctan 2
0 −

∫ arctan 2

0
sec θ tan2 θdθ

= sec θ tan θ]arctan 2
0 −

∫ arctan 2

0
sec θ(sec2 θ − 1)dθ

= sec θ tan θ]arctan 2
0 −

∫ arctan 2

0
sec3 θdθ +

∫ arctan 2

0
sec θdθ.

From this we obtain

L =
1

4
[sec θ tan θ + ln | sec θ + tan θ|]arctan 2

0

=
1

4
[2 sec arctan 2 + ln | sec arctan 2 + 2|],

which completes the computation.

9.1 Area of Surface of Revolution

The intuitive idea is that if we have a curve, and we let this rotate about an axis, we will obtain a

surface that bounds a solid. Similarly to how we can compute the lateral area of a cylinder from

knowledge of the length of a side of the cylinder, and the radius of rotation, we can expect that

a similar computation is applicable to the case of more general curves. However, the issue is that

our curve is in general not straight, and therefore the same procedure is not applicable in the exact

way because the radius of rotation depends on the position on the curve.

We can tackle the problem by subdividing the curve into smaller pieces by taking points

P0, P1, . . . , Pn on the curve, so that with some approximation, we have a cylindrical surface gener-

ated by a segment of length |Pi−Pi−1|. The points Pi can be assumed to correspond to the points

xi on the interval [a, b] of definition of the function f that gives the curve. Rotating the segment

from Pi−1 to Pi, we obtain a band (i.e. a small “cylinder”) with slant height li = |Pi − Pi−1|,
and average radius given by yi−1+yi

2 . The surface is going to be given by π(yi−1 + yi)|Pi − Pi−1|.
Applying the same procedure that we used for the computation of arc length, we can find a point

x∗i such that |Pi − Pi−1| =
√

1 + [f ′(x∗i )]
2∆x. We can, in addition, make the approximation where
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f(x∗i ) ≈ yi−1 and f(x∗i ) ≈ yi, due to the fact that the length is assumed to be very small. So, we

have found the formula

π(yi−1 + yi)|Pi − Pi−1| = 2π
yi−1 + yi

2
|Pi − Pi−1| ≈ 2πf(x∗i )

√
1 + [f ′(x∗i )]

2∆x.

When we want to compute the whole are, we have to perform a limit for this procedure, and sum

all the components, so that we define the area as the integral

S = 2π

∫ b

a
f(x)

√
1 + [f ′(x)]2dx = 2π

∫ b

a
y

√
1 + [

dy

dx
]2dx (9.11)

The formula can be expressed, symbolically, in terms of infinitesimal arc length as

S = 2π

∫
yds,

where y = f(x) is the function whose rotation gives the surface, and ds =
√

1 + [f ′(x)]2dx is the

length of an infinitesmial arc.

Example 9.1.1. Consider the curve given by y =
√

4− x2 with x in [−1, 1]. Then, we have
dy
dx = −x√

4−x2 . For the surface we therefore find

S = 2π

∫ 1

−1

√
4− x2

√
1 + [

−x√
4− x2

]2dx

= 2π

∫ 1

−1

√
4− x2

√
1 +

x2

4− x2
dx

= 4π

∫ 1

−1
dx

= 8π.

For a rotation about the ~y-axis, we can proceed in the same way, finding an equation similar to

Equation (9.11), but with x and y swapped:

S = 2π

∫ b

a
f(y)

√
1 + [f ′(y)]2dy = 2π

∫ b

a
x

√
1 + [

dx

dy
]2dy, (9.12)

where here x is a function of y. We can write this equation in terms of the infinitesimal arc length

as well as

S = 2π

∫
xds. (9.13)

We can also have a rotation about the ~x-axis, and a curve described by an equation of type

x = g(y), with y between a and b. In this case, the surface area is given by

S = 2π

∫ b

a
g(y)

√
1 + [g′(y)]2dy = 2π

∫ b

a
y

√
1 + [

dx

dy
]2dy. (9.14)

Using the infinitesimal arc length notation, we have

S = 2π

∫
yds, (9.15)
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Rotation about ~x Rotation about ~y

y = f(x) 2π
∫ b
a y

√
1 + [ dydx ]2dx 2π

∫ b
a x

√
1 + [ dydx ]2dx

x = g(y) 2π
∫ b
a y

√
1 + [dxdy ]2dy 2π

∫ b
a x

√
1 + [dxdy ]2dy

Table 9.1: Surface area integrals.

where now ds =
√

1 + [dxdy ]2dy. Once again, the whole discussion can be done with the roles of x

and y exchanged.

To summarize, we have two types of equations. Equation (9.13) and Equation (9.15) where

in both cases we can use either ds =
√

1 + [ dydx ]2dx or ds =
√

1 + [dxdy ]2dy. We have Table 9.1 to

remember what to use.

Example 9.1.2. Consider now the surface generated by rotating the function y = x2 between

x = 1 and x = 2 about the ~y-axis. We want to compute the area of the surface of rotation.

We see that we are in the situation where we have a rotation about ~y, and the curve is described

by a function y = f(x). So, we need to use the top-right entry of Table 9.1. So, we need to compute

the integral 2π
∫ b
a x

√
1 + [ dydx ]2dx, where y = x2. We have dy

dx = 2x, and a = 1, b = 2.

We have

S = 2π

∫ 2

1
x
√

1 + [2x]2dx (9.16)

= 2π

∫ 2

1
x
√

1 + 4x2dx. (9.17)

This integral can be solved with a substitution, which we leave this as an exercise to the reader.

9.2 Applications

In this section we consider some applications of integration to problems in physics and engineering.

First, we consider the problem of computing the force that water applies on a dam (of trapezoidal

shape). Recall first that the pressure that a force applies on a surface A is is given by the force per

unit surface. So, negletting directions (forces are vectors!), we can write

P =
F

A
.

When we consider a fluid, and a surface A in the fluid at depth d, we find that P = ρgd, because

the force on the fluid is given by the column of water, which has weight F = ρgAd (volume times

density). It is an experimental fact, that the pressure in afluid is independent of the direction

considered. Therefore, if we change the orientation of the surface, as long as the difference in depth

along the surface is negligible, we find that the pressure is the same.

Example 9.2.1. Consider a dam of trapezoidal shape, with sizes being 50 m for the top side, 30 m

for the bottom side, and 20 m height. We want to find the force that water exerts on the dam, in

the assumption that the water reaches 4 m below the top level of the dam.
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From the previous discussion, we know how to compute the pressure as a function of depth.

Knowing pressure would allow us to find the force by multiplying it by the area it is exerted on.

However, since the pressure is not constant along the dam, we need to brake the problem in small

portions of the dam in a way that we can compute the force piece by piece. We need to use small

rectangles where the height is small, so that the depth has little variation, and in that case we can

compute the force by considering the pressure as being constant.

We fix a coordinate system where the ~x- axis is oriented vertically, and it has a zero at the

surface of the water, and it is placed in the middle of the trapezoid. A small rectangle as described

above is placed at distance x∗i from the origin, which means that the average depth is x∗i , and it

has height ∆x. We need to compute the area of the rectangle. To do so, observe that the total

length is given by wi = 2(15 + ai), where ai is the lateral portion, which we need to compute. By

considering similar triangles, we obtain for ai:

ai
16− x∗i

=
10

20
,

which gives

ai = 8− x∗i
2
.

We therefore have wi = 2(15 + ai) = 46− x∗i . Now, we can compute the force Fi on the portion of

dam of area wi∆x as Fi = PiAi, where Pi = ρgx∗i , and Ai = wi∆x. We get

Fi = ρgx∗i (46− x∗i )∆x.

To compute the force acting on the whole dam, we need to sum all forces Fi. So, Ftot ≈
∑n

i=1 Fi =∑n
i=1 ρgx

∗
i (46− x∗i )∆x. To compute Ftot exactly, we need to perform the integral

Ftot = ρg

∫ 16

0
x(46− x)dx.

We now consider the problem of finding the center of mass. This is the point of an object that

we can use to create equilibrium. For instance, if we have a rod (of negligible mass) with two masses

m1 and m2 attached to the ends of it, we can find a point in between the two masses such that if

we place the rod over a fulcrum at exactly that point, the rod will be in equilibrium and will not

rotate. Archimedes found the relation that the masses m1 and m2 have to satisfy with respect to

the distances d1 and d2 from the point at which the fulcrum is placed in order to have equilibrium.

This is

m1d1 = m2d2.

If we set a horizontal axis ~x, and we have the point with mass m1 closer to the zero of the axis than

the other mass, we can express the distance d1 from the fulcrum x̄ as d1 = x̄−x1, and d2 = x2− x̄,

where x1 and x2 are the points where m1 and m2 are placed, respectively. Then, from m1d1 = m2d2

we find

x̄ =
m1x1 +m2x2

m1 +m2
.
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The point x̄ is called the center of mass of the system. The quantities Mi = mixi are called the

moments of the mass mi, so that the numerator in the expression for the position of the center of

mass is the total moment of the system.

A similar approach can be used when we have several (say n) masses on a one dimensional rod.

In that case we can simply get the center of mass as

x̄ =
m1x1 +m2x2 + · · ·+mnxn

m1 +m2 + · · ·+mn
.

Let us now consider the case where we want to compute the center of mass of a continuous

object. Also, for the sake of simplicity, assume that this object is given by the space under a curve

defined through a function y = f(x). In this case, the discrete approach considered up to now does

not work anymore. We need to consider a partition of the interval of the domain of the function,

and then break the continuum into small blocks. Of course, these blocks are going to be rectangles.

Using some physical principles that involve the symmetries of objects, we assume that the center

of mass of an object that is symmetric with respect to a line has to lie on the line. Therefore, for

a rectangle, the symmetry of the system gives that the center of mass lies in the middle of the

rectangle.

We are now in the position of using the approximation of small rectangles to compute the mo-

ments, and therefore the center of mass. When computing the moment My of the whole continuous

object with respect to the ~y-axis, we need to sum all the contribution of the rectangles Ri, where

each moment My(R)i is given by the product of mass (density times area) and distance of the

center of the rectangle. We have

My(Ri) = ρf(x̄i)x̄i∆x.

Summing these contributions together we get

My ≈
n∑
i=1

ρf(x̄i)x̄i∆x.

Therefore, taking the limit of this procedure we obtain

My = lim
n→∞

n∑
i=1

ρf(x̄i)x̄i∆x

=

∫ b

a
ρxf(x)dx.

A similar procedure now applies for the computation of Mx, where the distance of the center of Ri
from the ~x-axis is given by 1

2f(x̄i). So, we get

Mx(Ri) = ρ
1

2
f(x̄i)

2∆x.

This gives us an appoximated moment

Mx ≈
n∑
i=1

ρ
1

2
f(x̄i)

2∆x.
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Finally, we get

Mx = lim
n→∞

n∑
i=1

ρ
1

2
f(x̄i)

2∆x

=
1

2

∫ b

a
ρf(x)2dx.

Once we have computed the moments, we can obtain the center of mass simply by dividing

them by the total mass of the system. The total mass is obtained by multiplying density of the

object and the total area. So, we get

mtot = ρA

=

∫ b

a
ρf(x)dx.

We now are in the poistion of writing the coordinates (x̄, ȳ) of the center of mass, as

x̄ =
My

mtot

=

∫ b
a ρxf(x)dx∫ b
a ρf(x)dx

,

and

ȳ =
Mx

mtot

=
1
2

∫ b
a ρf(x)2dx∫ b
a ρf(x)dx

.

Notice that while the density ρ is most easily assumed to be constant, we have not explicitly

done so. In fact, our reasoning is applicable as long as ρ depends only on x and not on y, in other

words, ρ depends only on the horizontal coordinate and not on the height. When ρ is constant,

then the expression in x̄ and ȳ is does not depend on ρ, since we can just simplify the ρ at the

numerator with the one at the denominator. In this case we can rewrite the formulas as

x̄ =

∫ b
a xf(x)dx

A
,

and

ȳ =
1
2

∫ b
a f(x)2dx

A
.

Exercise 9.2.2. Compute the center of mass of a half disk of radius r. (Hint: The x-coordinate is

easy to compute.)

When dealing with an object that lies between two curves defined through the functions y = f(x)

and y = g(x), the same porocedure as before gives the formulas

x̄ =

∫ b
a x[f(x)− g(x)]dx

A
,
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and

ȳ =
1
2

∫ b
a [f(x)2 − g(x)2]dx

A
.

We now prove a very old theorem (due to the Greek mathematician Pappus).

Theorem 9.2.3 (Theorem of Pappus). Let R be a plane region that lies completely on one side of

a line l in the plane. Then, the volume V of the solid obtained by rotating R about l is given by

V = Ad, (9.18)

where A is the area of R, and d is the distance traveled by the center of mass of R as R rotates

about l.

Proof. We assume for the sake of simplicity that the plane region R is delimited by two functions

f(x) and g(x), and that the roation is such that l coincides with the ~y-axis.

We apply the method of cylindrical shells to the computation of V . We have

V = 2π

∫ b

a
x[f(x)− g(x)]dx

= 2πx̄A

= Ad,

where we have empployed Equation (9.18) in the second equality, and d = 2πx̄ is the distance

traveled by the center of mass in the rotation.

The previous result makes it particularly easy to compute, for instance, the volume of a torus

(which is a fancy way of calling a doughnut). In fact, this can be obtained by rotating a disk of

radius r about the ~y axis at a distance R. Then, the area of the disk is just A = πr2. For reasons

of symmetry, the center of the disk is the center of mass, and the distance traveled in a rotation

with radius R is just given by d = 2πR. Applying Equation (9.18), we therefore obtain

V = Ad

= 2π2r2R.
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Chapter 10

Differential Equations

Differential equations (DEs) are equations involving an unknown function and its derivatives. The

importance of DEs lies in the fact that they are so commonly employed to model real world prob-

lems. For instance, classical and quantum mechanics is described through differential equations.

Models describing engineering problems are usually based on classical mechanics and involve DEs.

Chemical dynamics and population dynamics in chemistry and biology, respectively, are based on

DEs.

The use of DEs in describing real-world problems is due to the fact that they are equations

that relate a quantity of interest (i.e. a function) and its rates of change. For instance, the relation

between position and acceleration (which is the second derivative of position as a function of time),

gives the law of motion (one of Newton’s laws) in classical mechanics.

In this chapter we will introduce the concept of DE, and see how to solve some elementary

equations. We will also develop some visual and numerical tools that help us understanding natural

phenomena described through DEs.

10.1 Some motivating examples

We begin by considering some motivating examples. First, we consider the problem of modeling

population growth.

10.1.1 Population growth

We want to model a given population (of animals, or bacteria, to say just two common examples).

The fundamental assumption of such a model is that the population grows at a rate that is propor-

tional to the size of the population. This is reasonable, when we do not consider external conditions

such as potential lack of food (higher population means also higher amount of food needed), absence

of predators and so on.

If time t is the independent variable, we call P (t) the function that determines the population

size. We are interested in undertanding how the population varies over time. Therefore, we need

to understand how to relate P to its rate of growth. The latter, simply defines how the population

changes within a certain time frame. Of course, we can express this as a derivative, since this would

indicate the population variation in a very small time frame.
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In the assumption that the population growth is proportional to the population, this means

that

dP

dt
= kP, (10.1)

where k is the constant of proportionality. This constant depends on the type of population (e.g.

certain types of animals will have one constant, bacteria will have another one), and in realistic

models it will also depend on the environment (e.g. bacteria in one type of solution rather than

another one).

Of course, we would like to understand what type of functions P (t) would satisfy Equa-

tion (10.1). Such a solution to the equation would be a model of the population. We would

need a function whose derivative is itself, up to a constant. We already know a funnction that sat-

isfies such condition. In fact, the function P (t) = ekt has precisely this property. As an excercise,

the reader should use P (t) = ekt and veerify that this satisfies the equation.

In general, if we take an arbitrary number c, and multiply the previous solution by it, we find

that the equation is still satisfied. In fact, P (t) = cekt is a solution to Equation (10.1) for any

choice of c.

Our model has a free parameter, c, which we would have to understand in order to be able to

model the population. To determine c, we need some information from the system (the population

that we are modeling). For instance, if we knew P (0), meaning the populaation at the first time of

observation, which we call time zero, it would give us the value of c, since P (0) = cek·0 = ce0 = c.

Equation (10.1) has some serious limitations. Mostly, this is because it can model populations

under some unrealistic assumptions, such as infinite amount of resources. This is not necessarily

true. A more realistic type of behavior is that a population can grow exceptionally fast initially,

but then it starts levelling off toward its carrying capacity M . Also, if for any reason it exceeds its

capacity M , we would expect that it would decrease back toward it.

So, we need to modify our model (our DE) in such a way that these behaviors are taken into

account. The previous observations can be incorporated into the DE by assuming that the growth

is proportional not only to the population, but also the difference between carrying capacity and

population. So, as P grows toward M , the difference M −P becomes small, and the rate of growth

decreases. Also, if P exceeds M , the difference M − P will be negative, and the growth will be

negative, so that the population decreases toward M again. Our model now reads

dP

dt
= k̂P (M − P ) = kP (1− P

M
), (10.2)

where k = k̂M .

Equation 10.2 is called logistic differential equation. The solutions of this equation are not as

straightforward to obtain as before, but one can see that they have the qualitative behavior of

“convergin” toward the stable population P = M over time. In other words, the solutions of the

equation have an horizontal asymptote at P = M , showing that the population tends to become

M , either by decreasing toward it, or increasing toward it.

10.1.2 Motion of Spring: Hooke’s Law

Hooke’s Law states that the force that a spring excerts over an object attached to it (say of mass

m), is proportional to the stretch of the spring from its resting size. In other words, if we move the
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spring by its equilibrium position by x units, then we will have a force that is given by F = −kx, for

some k that depends on the spring (manufacturers usually provide that). From Newton’s Second

Law, we also know that the force F is given by the product of mass m and the acceleration of the

mass, which is given by d2x
dt2

. So, we have the equation

d2x

dt2
= − k

m
x. (10.3)

The general solution of Equation (10.3) is a combination of sine and cosine functions, which is

well aligned with our intuition, since we expect the mass to start oscillating around the equiilibrium

position.

10.1.3 General differential equations

In general, a differential equation is an equation containing an unknown function and its derivatives.

Finding a solution means that we find a function y such that the equation is satisfied when we plug

y and its derivatives in the equation. In a sense, finding an indefinite integral is a form of solving

a (very simple) differential equation, since we are substantially asked to solve y′ = f(x). In fact, if

y = g(x) is a function in
∫
f(x)dx, we have (by definition) that y′ = f(x). In a more proper way,

these equations are called ordinary differential equations, or ODEs for short. Here ordinary means

that there is only one independent variable, and derivatives do not refer to multiple variables (in

which case one has partial derivatives, and partial differential equations, or PDEs).

In general, we can write the form of an ODE as

F (x, y, y′, . . . , y(n)) = 0, (10.4)

where F is some function that “mixes” x, y and higher derivatives of y up to the nth derivative.

We will consider some very special cases of functions F for which solving the corresponding ODE

is very simple.

The order of a differential equation is the order of the highest derivative appearing in the

equation. So, for instance, the order of the logistic differential equation is 1, while the order of the

spring motion is 2.

As observed in the case of population growth, having a family of solutions means that we have

some free parameter(s) that we would like to determine. So, usually we are interested in some

specific solutions that satisfy some extra conditions. For instance, we want the value of y at the

initial point t0 to be a specified y0. This means that we are picking the solution that passes through

the point (t0, y0). This is called an initial value problem, or IVP. Intuitively, it corresponds to having

the value of a given system at time t0 (e.g. by experimental means), and predicting the behavior

of the system at later times.

10.2 Direction fields and Euler’s method

Generally speaking, it is extremely difficult to solve DEs but in some specific cases. However, one

can use visual and numerical methods to understand the behavior of the system that is modeled

through a DE even when an explicit solution is not known.
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Direction fields allow us to draw solutions even when we do not know an explicit solution. For

instance, consider the initial value problem

y′ = x+ y, y(0) = 1 (10.5)

. This means that if y is a solution, i.e. a curve in the plane that satisfies the equation, the slope

of the graph of y needs to be equal to the sum of the x coordinate and the y coordinate of the

point under consideration. Therefore, we can draw little line segments at points in the plane, where

these lines represent the slopes of the graph of a solution y(x). At the point x = 0, the initial value

tells us that y = 1. Therefore, we have a diagonal little segment drawn at the point (0, 1), of slope

y′ = 0 + 1 = 1.

Euler’s method is a numerical approach to solve differential equations. We assume here to deal

with an IVP of type

y′ = F (x, y), y(x0) = y0 (10.6)

for some function F . The fundamental idea here is that we can numerically approximate the

derivative y′ = dy
dx by considering very small fractions of type ∆y

∆x , where ∆x is the step of the Euler

solver. Observe, that if we wanted to know y(x0 + ∆x), we could think of the quotient from the

defition of derivative as ∆y
∆x = y(x0+∆x)−y(x0)

∆x . But, since this is an approximation to the derivative
dy
dx , and the ODE gives us that dy

dx = F (x, y), we can equate y(x0+∆x)−y(x0)
∆x to F (x0, y0). This gives

us an estimate for y(x0 + ∆x) as

y(x0 + ∆x) = y0 + ∆xF (x0, y0), (10.7)

where we are using the fact that by the initial value, we have y0 = y(x0). We set y1 = y(x0 + ∆x),

and x1 = x0 + ∆x. Now, we can apply the same procedure using x1 and y1 to obtain a subsequent

point (x2, y2) as

y2 = y1 + ∆xF (x1, y1). (10.8)

Proceeding in this way for n times, we obtain the value of yn at the point x0 + n∆x according to

yn = yn−1 + ∆xF (xn−1, yn−1). (10.9)

We summarize this procedure in the following.

Method 10.2.1 (Euler’s Method). Given an IVP as in Equation (10.6), we can numerically solve

it by choosing a step size ∆x, and finding the value yn at the points xn = x0 + n∆x according to

the numerical scheme

yn = yn−1 + ∆xF (xn−1, yn−1). (10.10)

Remark 10.2.2. Observe that we know how to perform the first step of the numerical scheme

because the IVT gives us x0 and y0.

Let us go back to the example of the IVP (10.5). Choosing ∆x = 0.1, and applying Method 10.2.1,

we obtain Table 10.1.
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n (step) xn yn

1 0.1 1.10000

2 0.2 1.220000

3 0.3 1.362000

4 0.4 1.528200

5 0.5 1.721020

6 0.6 1.943122

7 0.7 2.197434

8 0.8 2.487178

9 0.9 2.815895

10 1 3.187485

Table 10.1: Numerical solution of IVP (10.5) using Euler’s Method.

10.3 Separable equations

Separable differential equations are ODEs of the first order that can be written in the form

dy

dx
= g(x)f(y), (10.11)

for some functions g and f . Separable here refers to the fact that we can separate the right hand

side of Equation (10.11) in the product of a term containing only x, and another containing only

y.

In the assumption that f(y) 6= 0, we can rewrite Equation (10.11) as

dy

f(y)
= g(x)dx. (10.12)

Then, a solution to Equation (10.11) can be obtained by integrating both sides of Equation (10.12):∫
dy

f(y)
=

∫
g(x)dx. (10.13)

The justification for this procedure comes from an application of the Chain Rule. In fact, if

Equation (10.13) holds, by differentiating both sides of the equation with respect to x, and recalling

that from the Chain Rule d
dx = dy

dx
d
dy we have

d

dy
[

∫
dy

f(y)
]
dy

dx
=

d

dx

∫
g(x)dx

which gives

1

f(y)

dy

dx
= g(x),

which is equivalent to Equation (10.11).

Remark 10.3.1. After solving Equation (10.13), we find y in an implicit form. It is not necessarily

true that we are going to be able to explicitly find y as a function of x.

We show the procedure with an example.
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Example 10.3.2. Consider the equation

y′ = x2(3y + 1). (10.14)

After finding the general solution of this equation, we want to solve the IVP with y(0) = −1.

There is an immediate solution to Equation (10.14), which is obtained by taking the constant

solution y = −1
3 . In fact, in this case the equality reduces to an identity 0 = 0. We need to find

nonconstant solutions now.

The equation is separable, since the right hand side is a product of g(x) = x2 and f(y) = 3y+1.

We therefore rewrite it as

dy

3y + 1
= x2dx,

and integrate both sides obtaining∫
dy

3y + 1
=

∫
x2dx.

We now need to integrate both sides of the equation. We have
∫ dy

3y+1 = 1
3 ln |3y + 1| + const and∫

x2dx = 1
3x

3 + const. Using only a single integration constant c, we have found the equality

ln |3y + 1| = x3 + k,

where k = 3c is again just a simple constant. To find y explicitly (note that we have y only

implicitly so far), now we need to exponentiate both sides of the previous equation, which gives us

|3y + 1| = ex
3+k. We therefore have two possible solutions, 3y + 1 = ex

3+k or 3y + 1 = −ex3+k,

which give us y = 1
3 [ex

3+k − 1] and y = 1
3 [−ex3+k − 1], respectively.

Now, we have to select the solution (and the correct k) that satisfies the initial condition

y(0) = −1. This gives us −1 = 1
3 [ek − 1] and −1 = 1

3 [−ek − 1]. Observe that from the first one, we

cannot find a solution, because ek > 0, so that 1
3 [ek − 1] > −1

3 > −1. From the second equation,

−1 = 1
3 [−ek − 1] we find the correct y by solving the equation. We obtain −ek = −2, which gives

us ek = 2, and therefore k = ln 2.

The solution to the IVP is therefore y = 1
3 [−ex3+ln 2 − 1].

Example 10.3.3. We want to solve the differential equation dy
dx = 6x2

2y+cos y .

This is a separable equation, since the right hand side can be written as a product f(y)g(x)

where g(x) = 6x2 and f(y) = 1
2y+cos y . We can therefore obtain the solutions from Equation (10.13).

We have∫
[2y + cos y]dy =

∫
6x2dx

which gives us

y2 + sin y = 2x3 + k.

The solution relates y to x implicitly, and it is not clear in this case how to explicitly obtain y as

a function of x.
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We can now go back to the study of population growth and the logistic equation. We have

found two equations that describe population growth over time. One was not very realistic, since

it assumed a no restriction on food available to the population, no predators and so on. This was

the differential equation

dP

dt
= kP.

Of course, this is a separable equation, since f(t) = k is a (constant) function of time, and g(P ) = P

is a function that only contains P . Then we can find a general solution by using Equation (10.13).

We find∫
dP

P
=

∫
kdt,

which gives lnP = kt + c. Taking exponents of both sides of the equation we find P = ekt+c =

ecekt = Aekt, where we have set A = ec. As already described at the beginning of the chapter, in

order to find also the integration constant A, we need some extra information. For instance, if we

know the value of the population at time zero P (0), we will have P (0) = Ae0 = A. Separation of

variables has given us exactly the solution that we predicted before, based on intuition.

A more accurate model was then obtained by the logistic equation, which we did not solve.

However, this is also a separable equation, and we can solve it now. Recall that the logistic

equation is given by

dP

dt
= kP (1− P

M
).

This is separable since the right hand side can be written as a product g(t)f(P ) where g(t) = k

(constant!), and f(P ) = P (1− P
M ). Then we can obtain a solution by integrating the equation∫

dP

P (1− P
M )

=

∫
kdt.

Clearly, we have
∫
kdt = kt+ c. To integrate te left hand side, we use partial fractions. We have∫

dP

P (1− P
M )

=

∫
M

P (M − P )
dP

=

∫
[
1

P
+

1

M − P
]dP

= lnP − ln |M − P |+ k.

Equating the two expressions that we have found, and renaming the constant of integration C we

get the solution

lnP − ln |M − P | = kt+ C,

which is an implicit form of the solution. We can obtain an explicit solution by rewriting lnP −
ln |M − P | = ln P

|M−P | = − ln |M−P |P and then taking exponents of both sides of the equation, to

get

|M − P |
P

= ±Ae−kt,
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where we have set again A = e−C . This gives us M−P
P = ±Ae−kt, where the sign depends on

whether P is larger or smaller than M . Solving for P we get

P =
M

1±Ae−kt
. (10.15)

This clearly shows that limt→∞ P = M , as claimed at the beginning of the chapter.

10.4 Linear Differential Equations

A linear differential equation is is a DE in the from

y′ + g(x)y = f(x). (10.16)

When f(x) = 0, the equation is said to be homogeneous, while when f(x) is not zero, it is called

non-homogeneous.

Before understanding how to solve these equations in general, we start with a simple example,

and show how we can obtain a solution.

Example 10.4.1. Let us consider the equation y′ + 1
xy = 1. This is a non-homogeneous linear

differential equation, where g(x) = x and f(x) = 1.

Suppose q(x) is a nonzero function. Then, we can multiply the whole equation by q(x) and

obtain the equation

q(x)y′ + q(x)
1

x
y = q(x). (10.17)

We start with the observation that the left hand side looks more or less like the derivative of

a product. In fact, the derivative of a product of type q(x)y is given by d
dx(q(x)y) = q(x)y′ +

q′(x)y, by using the Leibniz rule. So, if q(x) is chosen in a way such that q′(x) = q(x) 1
x , then in

Equation (10.17) we would have precisely the derivative of q(x)y.

Now, the interesting thing is that q′(x) = q(x) 1
x is a separable differential equation, and we

know how to solve such an equation. We have q(x) = x+ c. Since we are interested in a function

q(x) that satisfies the equation q′(x) = q(x) 1
x and not the most general one, we can simply take

c = 0. Using this q(x) in Equation (10.17) we have obtained a new equation

d

dx
(xy) = x. (10.18)

We can integrate both sides of the equation to get

xy =
1

2
x2 + k. (10.19)

This gives us y = 1
2x+ k

x . Solving the equation was very simple in this case, but the same procedure

can be seen to work more in general.

The general apporach is a generalization of the procedure unveiled in the previous example. In

fact, given a linear DE as in Equation (10.16), we can multiply both sides of the equation by a

function q(x) which we want to determine in such a way to have

d

dx
(q(x)y) = q(x)f(x).
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Since d
dx(q(x)y) = q(x)y′+ q′(x)y, this requires us to have q′(x) = g(x)q(x). Of course, the latter is

a separable differential equation which we can solve by separating the variables. A solution to the

corresponding separable equation is given by q(x) = e
∫
g(x)dx. We therefore obtain a function q(x)

so that our problem has now been reduced to solving d
dx(q(x)y) = q(x)f(x). This can be solved by

integrating both sides of the equation to obtain

q(x)y =

∫
q(x)f(x)dx, (10.20)

from which we get a solution

y =
1

q(x)

∫
q(x)f(x)dx. (10.21)

The function q(x) that allows us to solve the initial differential equation (10.16) is called an

integrating factor. The procedure just described can be summarized in the following.

Method 10.4.2. Let

y′ + g(x)y = f(x)

be a linear differential equation. To solve the equation, we can multiply both sides by the function

q(x) = e
∫
g(x)dx, and obtain a solution as y = 1

q(x)

∫
q(x)f(x)dx.

Example 10.4.3. We want to solve the equation y′ + 3x2y = 6x2.

The integrating factor is given by q(x) = e
∫

3x2dx = ex
3
, where we have chosen the integration

constant to be zero (as in Example 10.4.1). Having q(x), we can now solve the original equation as

y(x) =
1

ex3

∫
6x2ex

3
dx

=
1

ex3
[2ex

3
+ k]

= 2 + ke−x
3
.

Example 10.4.4. Let us consider another problem motivated by real world applications. Here we

have a circuit with a battery that generates a time dependent voltage E(t), with a corresponding

electrical current I(t). The voltage is measured in volts V , and the current in amperes A. Suppose

that the circuit also has a resistor R measured in ohms Ω, and an inductor with inductance L

measured in henries H.

The resistor and the inductor both induce a voltage drop, which can be written as RI(t) (Ohm’s

Law), and LdIdt , respectively. One of Kirchoff’s laws states that the sum of the voltage drops equals

the total voltage supplied E(t). We therefore have a linear differential equation

L
dI

dt
+RI = E(t). (10.22)

Let us consider now a battery that gives a constant voltage of 60V , a resistance of 12Ω, and

inductance of 4H. Assume that at time zero we switch on the circuit, so that I(0) = 0. We want

to compute the current I(t) as a function of time, and find the limiting value of the current.

Our differential equation, after plugging the values given above in Equation 10.22 becomes

dI

dt
+ 3I = 15,
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and with I(0) = 0 this is an IVP.

The integrating factor is obtained by solving q(t) = e
∫

3dt = e3t, where as usual we are choosing

a zero integration constant (recall that we just need one integrating function, rather than the most

general one). Then, we have the equation

e3tdI

dt
+ 3e3tI = 15e3t,

from which we get

d

dt
(e3tI) = 15e3t.

Integrating both sides of the equation we find e3tI = 15
∫
e3tdt = 5e3t + k. Rewriting for I(t)

explicitly, we find

I(t) = 5 + ke−3t.

To find the limiting value of I(t) we need to take the limit t→∞. Since e−3t → 0, as t→∞,

it follows that the limiting value is 5 amperes.

Example 10.4.5. This is a qualitative example related to biology. This model, called the Lotka-

Volterra equations, or Predator-Prey system, is a good model for the population dynamics relating

predators and prey in a biological environment.

We indicate by R(t) the number of preys in an enviroment as a function of time, while W (t)

indicates the number of predators in the same environment. A good example might be the poopu-

lation of wolves and rabbits. We know that in an enviroment that is ideal, a population can grow

exponentially. For wolves, we assume that we have an exponential decay, since without preys, the

wolves would not be able to feed temselves.

The population of preys diminishes with a rate proportional to the predators, since the more

the predators, the more the preys are being hunted. The number of encounters between the two

species depends on the size of the two poopulations. So, the equation for the preys is given by
dR
dt = kR − aRW . Similarly, for the predators we get dW

dt = −rW + bRW . Here, k, r, a, b are all

constants that depend on the populations under consideration.

The model that describes the population dynamics is given by{
dR
dt = kR− aRW
dW
dt = −rW + bRW.

(10.23)

This is a system of two linear differential equations whose solution gives the variation of the two

populations with respect to time. A typical solution of the Lotka-Volterra equations shows an

oscillatory behavior (with shifted oscillations between the two populations). We have not learned

how to deal with systems, so we will not consider this system in detail, but it shows yet another

application of the study of differential equations in practical problems.



Chapter 11

Sequences, Series, and Power Series

The notions of sequence and series are extremely important in mathematical analysis, and more

generally in all mathematics. Before delving into the subject, we give a motivating example from

differential equations.

We consider the differential equation

y′′ + y = 0. (11.1)

We would like to find a general solution to this equation. Of course, we can immediately see that

sinx and cosx are both solutions of the equation by direct inspection. However, we do not know if

this is a general result. Moreover, how should we proceed when the solution is not so obvious? So,

even if this problem is very simple, it is worth having a look at it from a different perspective.

We now proceed in a heuristic way, and we will formalize several concepts that we consider now

in this chapter. We assume that we have a test function y(x) =
∑

n=0 anx
n which is a polynomial

of some degree, where the coefficients an are just numbers. We do not concern ourselves excessively

with writing the extremes of summation and the degree of the polynomial, as we are proceeding

in an intuitive way here. It is clear that in order to completely determine y(x), we would have to

determine the coefficients an. But how do we do that? We could imagine to insert our test function

in Equation (11.1) and see if the equation somehow forces the coefficients an to have some specific

values. That would do the job.

We have y′(x) =
∑

n=1 nanx
n−1, where we have used the power rule. To compute y′′(x), we can

again use the power rule, and obtain y′′(x) =
∑

n=2 n(n− 1)anx
n−2. Putting everything together,

we need to have the new equation∑
n=2

n(n− 1)anx
n−2 +

∑
n=0

anx
n = 0. (11.2)

Now we can inspect directly what we need to have in order to obtain that Equation (11.2) is

satisfied. First, we would need to have the coefficients for the term x0 to be the same. The first

term gives x0 when n = 2, while the second term gives zero when n = 0. So, we have an equality

2a2 + a0 = 0. Then, we have to inspect what happens with the coefficients of x1. This means that

in the first term, n = 3, while the second term has n = 1. We get an equality 3 · 2 · a3 + a1 = 0.

More generally, terms xk come from setting n = k + 2 in the first term, and n = k in the second

term. So, we need the equality

(n+ 2)(n+ 1)an+2 + an = 0. (11.3)

109
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This gives us the recurrence relation an+2 = − an
(n+2)(n+1) .

In other words, if a function y(x) written as a polynomial is a solution of Equation (11.1),

its coefficients have to satisfy the relation in Equation (11.3). Now we let ourselves wonder for

a minute. It would be great if any function could be a polynomial, because it would mean that

our solution is general. Of course, we know too well that this is not the case. However, there

is something very nice that is quite similar to this. While not every function is a polynomial, it

happens that regular enough functions can be written as an infinite polynomial (basically where

the terms never stop). It turns out that the same reasoning above will be applicable in this case

and we can find the solutions of DEs following the same procedure.

To conclude, from Equation (11.3) we find that when n is even, i.e. when n = 2k, we can

write a2k = a0
(−1)k

(2k)! , while when n is odd, i.e. when n = 2k + 1, we have a2k+1 = a1
(−1)k

(2k+1)! . It

turns out (and we will see it in this chapter), that these are the coefficients for cosine and sine

functions, respectively. Therefore, we have found that a general solution (which is regular enough)

to Equation (11.1) is a linear combination of sine and cosine. So, the solutions that we discussed

above were quite accurate, after all.

11.1 Sequences

A sequence is a list of intinitely many real numbers a1, a2, . . . , an, . . . indexed by the natural numbers

n = 0, 1, 2, . . .. More formally, one can think of a sequence as a function a : N −→ R that takes

a natural number n, and outputs a real number a(n), where we use n as a subscript as an for

simplicity of notation.

Any function that we have already encountered, as long as the numbers n = 0, 1, . . . are part of

its domain, defines a sequence, simply by restricting the domain to N. For instance, consider the

function f(x) = x2. Then, we can consider the sequence of numbers an = n2, which is obtained by

applying f(x) only on the numbers n = 0, 1 . . ..

The notation employed to indicate sequences is {an} or sometimes {an}∞n=0. Generally speaking,

a sequence can be defined by giving a formula for its nth term. The convenience of the notation

{an}∞n=0 is that it shows the “first” term of an explicitly. In fact, it is often useful to define an with

n ≥ d for some number d. For instance, consider the sequence an =
√
n− 2. Of course, for n = 0, 1

this sequence would not make any sense in the real numbers, so that we need to specify that the

first n is 2 by saying that n ≥ 2. Concisely, we can write {
√
n− 2}∞n=2.

The following example shows several sequences.

Example 11.1.1. The following are examples of sequences. The reader is invited to compute the

first few terms of each of them to understand how the definition works.

• an = 1
2n .

• an = n
n+1 .

• an = e
n

n+1 .

• an =
√
n+ 1.
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Another procedure to define a sequence is by giving a recurrence formula. Recurrence formulas

are formulas where we are able to obtain the nth term by knowledge of the previous terms. We

show this procedure with a famous example: The Fibonacci sequence.

Example 11.1.2. We indicate this sequence by {fn} since it is named after Fibonacci. This is

defined by the following assignment.

• f0 = 0.

• f1 = 1.

• fn = fn−1 + fn−2, for n ≥ 2.

The meaning of this definition is the following. We know how to get f0 and f1, because they are

given to us. To obtain f2, we need to set n = 2 in the formula fn = fn−1 + fn−2. This means that

f2 = f1 + f0 = 1 + 0 = 1. To obtain f3, we set n = 3 in fn = fn−1 + fn−2, therefore obtaining

f3 = f2 + f1 = 1 + 1 = 2. In this way we can obtain any term of fn, by knowing the preceding

terms.

When we considered functions, our main interest was in limits, through which we were able to

compute derivatives, and also define the notion of continuity. However, observe that finite limits

for sequences do not make any sense. In fact, the points of the domain of a sequence are isolated

since there are gaps between 0 and 1, or 1 and 2 and so on. There is one notion of limit that makes

sense for sequences, and it is of great importance. This is the limit of an as n goes to ∞, which is

conceptually similar to the notion of the limit of f(x) as x goes to ∞.

We say that a sequence {an} has the (finite) limit L if as n grows, an gets closer and closer

to L, possibly without never reaching it. The limit of a sequence, if it exists, is indicated by the

symbol

lim
n→∞

an = L.

Since it is clear that n→∞ (see discussion above), sometimes we simply omit it and write

lim
n
an = L,

lim an = L,

or also

an → L.

In this case we say that {an} converges to L, and we say that the sequence has a convergent

behavior.

Example 11.1.3. Consider the sequence an = 1
n , where n ≥ 1. Then, as n grows and takes larger

and larger values, e.g. n = 10, 100, 1000, 10000, and so on, the fraction 1
n becomes smaller and

smaller. In fact, we have that lim an = 0.

Observe that in this example an never reaches 0, but it gets closer and closer to it.
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A proper way of formalizing the intuitive idea of convergence explained above is by the following

definition.

Definition 11.1.4. A sequence {an} is said to converge to the number L, or it is said to have limit

L, if for any choice of ε > 0, we can find a natural number ν such that for all n > ν we have

|an − L| < ε.

This is indicated by either of the symbols

lim
n→∞

an = L, lim
n
an = L, lim an = L, an → L.

Similarly, we can define the limit of an when the function does not get closer and clsoer to

a number, but its values increase without any bound and an goes to ∞. We pose the following

definition.

Definition 11.1.5. The sequence {an} is said to be divergent to ∞ if for any positive number

M > 0 we can find a natural number ν such that whenever n > ν we have

an > M.

We indicate this situation by either of the symbols

lim
n→∞

an =∞, lim
n
an =∞, lim an =∞, an →∞.

A similar definition can be posed for limits that go to −∞. Such a sequence is said to be divergent.

We have the following extremely useful result to determine the limit of sequences.

Theorem 11.1.6. Suppose that the sequence an is derived from a function f(x) as f(n) = an.

Then,

• If limx→∞ f(x) = L, we have an → L.

• If limx→∞ f(x) =∞, we have an →∞.

Theorem 11.1.6 is particularly useful because it allows us to use tools from Calculus I such as

de L’Hôpital’s rule to compute limits of sequences.

Example 11.1.7. We want to compute the limit lim lnn
n , of the sequence an = lnn

n .

We set f(x) = lnx
x , with x > 0, which is continuous in its domain. Observe that an = f(n). So,

if we are able to compute the limit limx→∞ f(x), it follows that an will have the same limit. To

compute limx→∞ f(x) we can use de L’Hôpital’s rule. We have

lim
x→∞

f(x) = lim
x→∞

lnx

x

= lim
x→∞

1
x

1
= 0.

It therefore follows, applying Theorem 11.1.6, that lim lnn
n = 0 as well.
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We now list some properties of convergent sequences.

Proposition 11.1.8. Let {an} and {bn} be convergent sequences, and let c be a constant. Then,

the following results hold.

(i) lim(an + bn) = lim an + lim bn.

(ii) lim(an − bn) = lim an − lim bn.

(iii) lim can = c lim an.

(iv) lim anbn = lim an · lim bn.

(v) lim an
bn

= lim an
lim bn

, if lim bn 6= 0, and bn 6= 0 for all n large enough (so that both left hand side

and right hand side make sense).

(vi) lim apn = [lim an]p for p > 0 and an > 0.

Proposition 11.1.9. (i) If lim an = lim bn =∞, then lim(an + bn) =∞.

(ii) If lim an =∞ and lim bn = −∞, then lim(an − bn) =∞.

(iii) If lim an =∞, and lim bn = L 6= 0, then

lim anbn =

{
∞ if L > 0

−∞ if L < 0
.

The Squeeze Theorem also holds in the case of sequences.

Theorem 11.1.10 (Squeeze Theorem). Assume that there exists a natural number ν such that

an ≤ bn ≤ cn for all n > ν. Then, if lim an = lim cn = L, it follows that lim bn = L.

In other words, if at some point, when n becomes large enough, i.e. it is larger than some

number ν, the values of bn are always between an and cn, if bn is forced to have the same limit of

an and cn, if they converge to the same value. The Squeeze Theorem is very useful to show that

certain sequences are converging. This is a very powerful tool.

Observe that similarly to the case of functions here we need lim an = lim cn to be able to say

that lim bn is L. If lim an = L1 and lim cn = L2 and they are different, in general we can only say

that L1 ≤ lim bn ≤ lim cn, if this limit exists. In fact, we can very well have that such limit does

not exist.

Example 11.1.11. Consider the sequences an = −5 and cn = 5 for all n. Let bn = (−1)n be

the sequence that alternates between −1 and 1. Clearly, bn does not converge, since it will always

bounce between −1 and 1 without ever stabilizing. Also, since an and cn are constant, they are

convergent. But we have also that an ≤ bn ≤ cn for all n. What went wrong here, is that

lim an 6= lim cn.

Theorem 11.1.12. If lim |an| = 0, then it follows that lim an = 0.

Let us now consider some examples of convergent and divergent sequences.
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Example 11.1.13. We want to determine whether the sequence an = n
n+1 is convergent or diver-

gent.

We proceed in a way that is similar to how we dealt with limits of functions, when x→∞. We

group n and we rewrite

lim
n

n+ 1
= lim

n

n

1

1 + 1
n

= lim
1

1 + 1
n

=
lim 1

lim 1 + lim 1
n

=
1

1 + 0
= 1.

where we have used Proposition 11.1.8, and the limit lim 1
n = 0, since as n keeps growing, 1/n

becomes smaller and smaller without ever becoming smaller than zero.

Generally speaking, whenever a sequence is defined as a fraction of polynomials in n, we can

always group the largest power from numerator and denominator, and then take the limits of all

the terms.

Example 11.1.14. Let an = n3−2n+1
2n2+1

. We want to determine whether the sequence is convergent

or divergent.

We group the largest powers both from numerator and denominator. We have

lim
n3 − 2n+ 1

2n2 + 1
= lim

n3

n2

1− 2 1
n2 + 1

n3

2 + 1
n2

= limn
1− 2 1

n2 + 1
n3

2 + 1
n2

.

As computed before, using Proposition 11.1.8, and the fact that 1
n3 and 1

n2 converge to 0, we find

that lim
1−2 1

n2 + 1
n3

2+ 1
n2

= 1
2 . Of course, we also have that limn =∞. So, we can apply Proposition 11.1.9

(iii) with an divergent and bn convergent to L = 1
2 > 0, and we obtain that lim n3−2n+1

2n2+1
=∞.

Example 11.1.15. Let an = (−1)n

n . In this case, to evaluate the limit (and to determine if it exists

or not), we can use the absolute value of an and apply Theorem 11.1.12.

In fact, we have

lim |(−1)n

n
| = lim

1

n
= 0.

So, Theorem 11.1.12 gives us that lim an = 0 as well.

Theorem 11.1.16. If lim an = L, and the function f(x) is continuous at L, then we have

lim f(an) = f(L).
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Example 11.1.17. Consider the sequence an = 1
n . Let f(x) = ex. We have already seen that

1
n −→ 0. So, applying Theorem 11.1.16 it follows that f( 1

n) = e
1
n −→ e0 = 1.

We now consider an example where the use of the Squeeze Theorem simplifies the problem

greatly.

Example 11.1.18. Set an = n!
nn . We want to determine whether this sequence is convergent or

divergent (or if it does not have a limit).

If we write some of the terms of this sequence, we see that

• a1 = 1.

• a2 = 1·2
2·2 .

• a3 = 1·2·3
3·3·3 .

• In general we have an = 1·2···(n−1)·n
n·n···n·n , where the denominator has n multiplied by itself n times.

The general way to write an shows that we can write

an =
1

n

2 · 3 · · · (n− 1) · n
n · n · · ·n · n

(11.4)

≤ 1

n

n · n · · ·n · n
n · n · · ·n · n

(11.5)

=
1

n
. (11.6)

Therefore, we have 0 < an ≤ 1
n . since the constant sequence 0 converges to 0, and 1

n −→ 0, the

Squeeze Theorem gives us that an −→ 0 as well.

Example 11.1.19. We consider the sequence an = rn, where r is a fixed number. We want to

determine for what values of r this sequence converges.

In this case, Calculus I helps us again, with the use of Theorem 11.1.6. In fact, we know that

the function f(x) = rx has limits

lim
x→∞

rx =

{
∞ r > 1

0 0 < r < 1
.

It follows that an diverges for r > 1 and converges for r < 1. Of course, 1n = 1 for all n, and 0n = 0

for all n. Therefore, an → 0 for r = 0, and an → 1 for r = 1.

When −1 < r < 0, we have that 0 < |r| < 1, and therefore from the previous considerations

|rn| = |r|n −→ 0. Applying Theorem 11.1.12 we obtain that an −→ 0 as well. When r ≤ −1,

the sequence alternates between positive and negative numbers, and the absolute value does not

converge. Therefore, the limit does not exist.

The resut is summarized below:

lim rn =


0 − 1 < r < 1

1 r = 1

∞ r > 1

DNE r < −1

.
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We now introduce a concept of great importance. Namely, we will discuss the notion of mono-

tonic sequence.

Definition 11.1.20. A sequence {an} is said to be increasing if an ≤ an+1 for all n. If an < an+1

then we say that {an} is stricly increasing. Similarly, a function is said to be decreasing if an ≥ an+1

for all n. If an > an+1, then we say that the sequence is strictly decreasing.

A sequence that is either (strictly) increasing or (strictly) decreasing is said to be (strictly)

monotonic.

Remark 11.1.21. There are sequences that do not satisfy an ≤ an+1 or an ≥ an+1 for all n, but

they satisfy this property for n that is large enough. These sequences are said to be eventually

monotonic (with the same convention as above regarding increasing and decreaasing nomenclature).

Example 11.1.22. Consider the sequence an = 1
n , defined for n ≥ 1.

Since 1
n ≥

1
n+1 for all n ≥ 1, it follows that this sequence is decreasing. In fact, it is immediate

to verify that this sequence is strictly decreasing.

Example 11.1.23. We now want to show that the sequence an = n
n2+1

is decreasing (with n ≥ 1).

We have to check that an ≥ an+1. Using the definition of an, this means that we have to verify

that

n

n2 + 1
≥ n+ 1

(n+ 1)2 + 1
,

which gives us (upon clearing denominators)

n[(n+ 1)2 + 1] ≥ (n+ 1)(n2 + 1).

The previous inequality can be rewritten as n2 + n ≥ 1. Since n ≥ 1, n2 + n is always greater than

1. Therefore, the sequence is decreasing. In fact, since the inequality n2 + n > 1 holds with strict

sign, it follows that the sequence is actually strictly decreasing.

Definition 11.1.24. A sequence is said to be bounded above if we can find a number M such that

an ≤ M for all n. A sequence is said to be bounded below if we can find a number m such that

an ≥ m for all n.

A sequence that is bounded both from below and above, is simply said to be bounded.

Example 11.1.25. The sequence an = 1
n is bounded above by 1, and below by 0. Therefore, it is

bounded.

The sequence an = n is bounded below by 0, but it is not bounded above.

The sequence an = −n is bounded above by 0, but not bounded below.

Definition 11.1.26. Let A ⊂ R be a subset of R. We say that b is an upper bound for A if x ≤ b

for all x in A. Similarly, we say that c is a lower bound for A if x ≥ c for all x in A.

A least upper bound or supremum for the set A, denoted by supA, is an upper bound such that

any number smaller than supA is not an upper bound. A greatest lower bound or infimum for a

set A, denoted by inf A, is a lower bound such that any number larger than inf A is not a lower

bound.
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By definition of supA, is that if we consider a number q = supA− ε, where ε > 0 is arbitrarily

small, we have that q is not an upper bound. This means that there must exist a number a in the

set A which is greater than q. The Completeness Axiom states that any nonempty subset of the

real numbers A that has an upper bound, has also a supremum. Similarly, any nonempty subset

that has a lower bound, must also have an infimum.

Example 11.1.27. Consider A = [0, 1]. Then, in this case, supA = 1 and inf A = 0. Observe,

however, that the supremum and infimum do not need to be part of a set. In fact, sup[0, 1) = 1 as

well. This is because if we consider a number larger than 1, say 1.001, we can find infinitely many

numbers between 1 and 1.001 that are not in the set [0, 1). So, the only number that is “glued”

from above to [0, 1) is 1, even when the interval does not contain 1.

Example 11.1.28. Consider the set A = { 1
n} which is determined by the sequence an = 1

n . Then,

supA = 1, while inf A = 0. For the supremum, this is relatively obvious, since we have a largest

element, namely 1 of A. For the infimum, inf A = 0 follows from the fact that 1
n −→ 0, so if we

choose any number slightly above 0, we can find infinitely many numbers from the sequence 1
n that

are above 0 but are smaller than this chosen number!

Theorem 11.1.29. The following facts hold.

• Any monotonic sequence has a limit.

• Any monotonic bounded sequence is convergent.

In other words, a monotonic sequence is either divergent to ±∞ or convergent to a finite number,

and this depends on whether it is bounded or not.

Proof. Let {an} be a monotonic sequence. For the sake of clarity, assume that it is increasing.

The case of a decreasing sequence can be treated analogously. Suppose that {an} is not bounded

above. Then, for any choice of M > 0, there must exist a natural number ν such that aν > M ,

or otherwise an would be bounded above by M . Since an is increasing, for all n > ν, we have

that an ≥ aν > M . Since M was arbitrary, it means that lim an = ∞. Now, suppose that an is

bounded above. Then, we can find an M such that an ≤ M for all n. This means that the set

{an} has an upper bound. We claim now that L := sup{an} = lim an. For any choice of ε > 0,

we have that L− ε is not an upper bound, which means we can find some natural number ν such

that L ≥ aν > L − ε, and therefore |L − aν | < ε. However, since an is increasing, it follows that

L ≥ an ≥ aν for all n > ν. It follows that an −→ L. This completes the proof.

11.2 Series

Series are the limits of a special type of sequence, obtained by summing all the terms of a given

sequence. They formalize the notion of summing infinitely many terms together. This has been

encoutnered, for example, when we defined integrals!

Definition 11.2.1. Let {an} be a sequence. We define the sequence of partial sums sn =
∑n

i=0 ai
as the sequence consisting of the sum of the first n terms of {an}. A series, indicated as an infinite

sum as
∑∞

i=0 ai, is the limit of the sequence of partial sums, if it exists. If the limit is finite, we say
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that the sequence is convergent. If the limit exists but it is infinite, we say that the series diverges.

If the limit does not exist, we say that the series is not defined. In symbols, we have

∞∑
i=0

an = lim
n→∞

n∑
i=0

ai.

Sometimes we will shorten notation to
∑
ai to indicate a series. To simplify notation, occasionally

we also say that the series diverges when its partial sums do not have a limit (this is also called

oscillatory divergence sometimes).

Remark 11.2.2. As for the case of sequences, series can start at any arbitrary point. So, rather

than
∑∞

i=0 an, we can also encounter
∑∞

i=1 an, or
∑∞

i=7 an.

Example 11.2.3. Consider the series
∑∞

i=1
1

n(n+1) . We want to determine whether the series is

convergent, or divergent. If convergent, we want to compute the sum of it.

To do so, we need to determine the partial sums, and then take the limit of this. In other words,

we need to compute

sn =
n∑
i=1

1

i(i+ 1)
=

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
.

Observe that

1

i(i+ 1)
=

1

i
− 1

i+ 1
,

simply by taking a common fraction of the right hand side. Therefore, the partial sums sn can be

written as

sn =
n∑
i=1

1

i(i+ 1)

=
n∑
i=1

[
1

i
− 1

i+ 1
]

= [1− 1

2
] + [

1

2
− 1

3
] + [

1

3
− 1

4
] · · ·+ [

1

n
− 1

n+ 1
]

= 1− 1

n+ 1
.

We are therefore in the position of computing the limit of sn, and this will determine whether the

series is convergent or divergent (or if it is not defined). We now have

∞∑
i=1

1

n(n+ 1)
= lim sn

= lim[1− 1

n+ 1
]

= 1− 0

= 1.

The series is convergent.
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The series in Example 11.2.3 is a well known case of Telescoping Series. These series are

characterized by the fact that their terms can be written as differences of consecutive terms of

another sequence. In general, the series
∑∞

i=0 an is a telescoping series if we can find a sequence bn
such that an = bn+1 − bn. In the example, we had bn = − 1

n . Since each term is a difference, the

cancellation of the consecutive terms will happen exactly as in the example, and we can therefore

compute the series directly as a limit of bn.

Exercise 11.2.4. Let
∑∞

i=0 an be a telescoping series where an = bn+1 − bn for some sequence

bn satisfying lim bn = 0. Show that the series is convergent, and that its infinite sum is given by∑∞
i=0 an = −b0. Hint: repeat what has been done in Example 11.2.3 step by step.

Geometric Series

The geometric series is of particular importance in mathematics and applications. Recall that the

geometric sequence is defined by an = rn where r is some number. We have characterized when

an converges and diverges. The geometric series is the sum of the elements an of the geometric

sequence:
∑∞

n=0 ar
n, where a and r are fixed numbers.

First, suppose that r = 1. Then, the partial sums of the series are given by sn =
∑n

k=0 a1k =

a+ · · ·+ a = na→ ±∞, where the plus or minus sign depend on whether a is positive or negative.

So, in this case the series is divergent. Let us now assume that r 6= 1. In this case, we have that

sn = a+ ar + ar2 + · · ·+ arn, and rsn = ar + ar2 + ar3 + · · ·+ arn + arn+1. By subtracting both

equations we obtain

sn − rsn = a− arn,

from which we get

sn = a
1− rn

1− r
. (11.7)

We now need to compute the limit of sn, and this will give us the result. We know that when

−1 < r < 1, rn → 0. So, for such values of r we have

lim sn = lim a
1− rn

1− r
=

a

1− r
.

This means that when |r| < 1, i.e. when −1 < r < 1, the geometric series converges to 1
1−r . When

r > 1 one can see that lim sn =∞, and the series diverges, while for r ≤ 1 the limit does not exist.

Test for divergence

We first show an interesting example, and then give a general criterion for divergence.

Example 11.2.5. Let us consider the harmonic series
∑∞

n=1
1
n . We want to show that the series

is divergent.

We consider only the terms of partial sums with indices that are powers of 2: s2, s4, s8, s16, s32, s64

and so on. We can concisely write them as s2k . If we show that these terms become larger and

larger, it means that the series cannot converge, since convergence would mean that sn has a limit,
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and this is a property that is defined by a statement of type “for all n larger than...”, while we are

showing that there are always terms that grow unboundedly. Let us look at the terms s2k .

s2 = 1 +
1

2

s4 = 1 +
1

2
+ (

1

3
+

1

4
) > 1 +

1

2
+

1

4
+

1

4
= 1 +

2

2

s8 = 1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) > 1 + (

1

4
+

1

4
) + (

1

8
+

1

8
+

1

8
+

1

8
) = 1 +

3

2
.

One can proceed analogously for all terms s2k and see that there is an inequality of type ssn > 1+ n
2 .

Since 1 + n
2 −→ ∞ as n grows, we see that the terms of type s2n grow to infinity, which means

that sn cannot converge, since some of its terms go to infinity. One can show that lim sn = ∞ by

using Theorem 11.1.29, since the partial sums are monotonic increasing (all terms are positive, so

the partial sums become bigger), and the sequence of partial sums cannot be bounded as we have

shown, since s2n goes to infinity. Therefore, the limit of the paratial sums must be ∞, and the

series diverges.

The following result gives us a direct criterion to show that a series is divergent. It formalizes

the thought that if the series converges, the terms that are being added must become increasingly

small.

Theorem 11.2.6. If the series
∑∞

n=0 an is convergent, then lim an = 0.

Proof. Observe that we can write an = sn − sn−1, where sn = a0 + · · · + an is the partial sums

sequence. The fact that the series is convergent, means that sn is a convergent sequence. Let s

denote the limit of sn. Of course, we have lim sn = lim sn−1 = s since they are both the same

sequence, but shifted by 1 in the index. We therefore have lim an = lim(sn − sn−1) = lim sn =

lim sn−1 = s− s = 0.

We can reformulate the previous result in a way that is more directly applicable.

Method 11.2.7 (Divergence Test). If lim an 6= 0, then the series is divergent.

Example 11.2.8. Let us consider the series
∑∞

n=0
n2

3n2+1
. Since lim n2

3n2+1
= 1

3 6= 0, we have that

the Divergence Test gives us that the series is divergent.

Remark 11.2.9. The Divergence Test only tells us when a series diverges, but it does not give us

any information on the convergence. In fact, if an −→ 0, it does not follow that
∑
an converges as

well. For instance, the harmonic series is an example of such a situation, where 1
n −→ 0, but the

series diverges, as we have shown directly.

Properties of convergent series

We list here three useful properties of convergent series, whose proof is simple, and left to the reader

as an exercise.

Theorem 11.2.10. Let
∑∞

n=0 an and
∑∞

n=0 bn be convergent series. Then, we have

• For a constant c,
∑
can converges and

∑
can = c

∑
an;

• The series
∑

(an + bn) converges, and
∑

(an + bn) =
∑
an +

∑
bn;

• The series
∑

(an − bn) converges, and
∑

(an − bn) =
∑
an −

∑
bn.
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11.3 Integral Test and Estimates of Sums

We now develop some techniques that allow us to determine whether a series is convergent. We

begin by showing an important example.

Example 11.3.1. Consider the series
∑∞

n=1
1
n2 .

To understand whether this converges or not, let us consider the function f(x) = 1
x2

. Of course,

f(n) = 1
n2 whenever we pick a natural number n. So, the function in a sense generates the series.

If we consider the values n = 1, 2, . . . and plot the rectangles of base ∆x = 1, and heights on the

function f(x), we see that the series can be thought of as consisting of sums of rectangles lying below

the function f(x). We therefore find that the series is bounded above by the term 1+
∫∞

1
1
x2
dx = 2.

Since the terms in the partial sums are positive, the partial sums are monotonic (increasing). From

the fact that there is an upper bound given by 2, it follows from Theorem 11.1.29 that the series is

convergent.

One can also proceed in a similar way for
∑∞

n=1
1√
n

, but by bounding the series from below

with an improper integral. The integral would now be divergent, and this would mean that the

series diverges too.

The previous example is a simple version of the following important test.

Method 11.3.2 (Integral Test). Suppose that f(x) is a continuous, positive and decreasing function

on [1,∞), and let an = f(n). Then, the series
∑∞

n=1 an is convergent if and only if the improper

integral
∫∞

1 f(x)dx is convergent.

Remark 11.3.3. The test can be applied even when the series does not start at n = 1, but this is

what we used for the previous example. Moreover, f does not need to be decreasing everywhere. It

could also be eventually decreasing, meaning that it is decreasing in some interval [c,∞) for some

c > 1.

Example 11.3.4. Consider the series
∑∞

n=1
1

n2+1
.

Of course, the terms of the series can be written by means of the function f(x) = 1
x2+1

. The

function f is decreasing and positive. So, we can apply the Integral Test to determine whether the

series is convergent or not. We have∫ ∞
1

1

x2 + 1
= lim

t→∞

∫ t

1

1

x2 + 1
dx

= lim
t→∞

arctanx |t1

= lim
t→∞

(arctan t− π

4
)

=
π

2
− π

4

=
π

4
.

So, the series is convergent.

Example 11.3.5. We now determine for what values of p the series
∑∞

n=1
1
np is convergent.

When p < 0, the series is obviously divergent using the Divergence Test, since 1
np −→∞ in this

case. Similarly, when p = 0 1
np −→ 1, and the series is divergent again.
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Let us therefore consider p > 0. The series can be obtained by evaluating the function f(x) = 1
xp

on natural numbers, and f is continuous, positive, and decreasing on the interval [1,∞). So, we can

apply the Integral Test. We know (from previous examples on improper integrals) that
∫∞

1
1
xpdx

is convergent when p > 1 and it is divergent when p ≤ 1. So, this gives us that the corresponding

series is convergent when p > 1 and divergent when p ≤ 1.

This series is called the p-series, and it is of great importance when considering the comparison

tests that we will consider in the next sections.

Proof of Integral Test. The idea of the proof is the same as in the examples for 1
n and 1√

n
already

considered.

First, observe that since the series is assumed to have positive elements an = f(n) where f is

positive, it follows that the sequence of partial sums is monotonic. In fact, sn+1 = a1 + a2 + · · ·+
an + an+1 = sn + an+1 and since an+1 = f(n+ 1) ≥ 0, sn+1 ≥ sn. So, from Theorem 11.1.29, there

exists the limit of the partial sums sequence, and this is either infinity or the supremum of the set

{sn}, depending on whether {sn} has an upper bound or not.

Exactly as in the example we considered, we have the estimates a1+a2+· · ·+an ≤ a1+
∫ n

1 f(x)dx,

because the rectangles lie all inside the area under the curve f(x), and f(x) is decreasing, and also∫ n
1 f(x)dx ≤ a1 + a2 + · · · + an, because in this case the rectangles lie above the area under the

curve.

Suppose that
∫∞

1 f(x)dx < ∞, i.e. the improper integral converges and gives a finite number.

We have that

n∑
k=1

ak ≤ a1 +

∫ n

1
f(x)dx ≤ a1 +

∫ ∞
1

f(x)dx <∞, (11.8)

so the partial sums have an upper bound, given by a1 +
∫∞

1 f(x)dx. Theorem 11.1.29 therefore

guarantees that the series converges.

Conversely, assume that
∫∞

1 f(x)dx =∞, i.e. the imroper integral diverges. From the estimate∫ n
1 f(x)dx ≤ a1 + a2 + · · · + an = sn, it follows that the partial sums sn have no upper bound,

since
∫ n

1 f(x)dx → ∞, and sn ≥
∫ n

1 f(x)dx. So, applying Theorem 11.1.29 we find that the series

diverges to ∞.

The Integral Test allows us to determine whether the series converges, but does not give us

information on the sum of the series when this is convergent. We want to have a method that

allows us to estimate the sum of a convergent series. Of course, one could sum a large number of

elements of a series, say several thousands, and hope that this is a reasonable approximation. After

all, the summands of a convergent series become smaller and smaller, so we have a chance that if

we sum a large enough number of them, our approximation is not too bad. In order to determine

whether our approximation is good, or not, we should estimate the size of the remainder, which is

given by Rn = s − sn, where s =
∑∞

n=0 is the sum of the series, and sn is a partial sum obtained

by summing all the elements up to n.

Under the same assumptions as in the Integral Test, we can find an upper bound on Rn by

evaluating the integral
∫∞
n f(x)dx, i.e. Rn ≤

∫∞
n f(x)dx. This is because in the computation of

the integral, all the rectangles (as in the Integral Test) of height f(n) lie inside the area under the

curve f(x) for x ≥ n. This is substantially the same argument as in the Integral Test, but where
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we are starting to build rectangless from an arbitrary n, instead of n = 1. Similarly, we can also

find a lower bound as Rn =
∫∞
n+1 f(x)dx.

We have therefore found the following estimate.

Method 11.3.6 (Remainder Estimate for the Integral Test). Under the same hypotheses as the

Integral Test, assuming that the series converges to s, and setting Rn = s−sn, we have the estimates∫ ∞
n+1

f(x)dx ≤ Rn ≤
∫ ∞
n

f(x)dx. (11.9)

This result allows us to approximate a sum within a specified error. In fact, by taking n large

enough, we can control how small Rn becomes, and this gives us the accuracy of the approximation∑∞
n=0 an ≈

∑n
k=0 ak, obtained by summing elements of the series only up to n, rather than up to

∞.

11.4 Comparison Tests

In this section we will discuss more criteria to determine that a series is convergent. Here we

consider only series with non-negative terms. This means that the partial sums are monotonic

sequences, and by Theorem 11.1.29 the series are either convergent, or divergent to ∞, and this

depends on whether the series has a supremum or not.

Direct Comparison

The first result is very natural. If we have two series, one of which is always smaller than the other,

then the convergence of the larger ones implies convergence of the smaller one. This is because

there will be an upper bound on the smaller series, and therefore it will have to converge (see

discussion on the use of Theorem 11.1.29 above). Also, if the smaller one diverges, the larger one

has to diverge as well following a similar reasoning. We have the following result.

Method 11.4.1 (Direct Comparison Test). Suppose that
∑
an and

∑
bn are series with non-

negative terms, such that an ≤ bn for all n (or eventually). Then,

(i) If
∑
bn is convergent,

∑
an is convergent as well.

(ii) If
∑
an is divergent,

∑
bn is divergent as well.

Proof. As already pointed out, both
∑
an and

∑
bn must have a limit, which is either finite or

infinite, by Theorem 11.1.29, because their partial sums are monotonic increasing. Whether the

limit is finite or infinite depends only on them having a finite supremum or not. We consider the

case where an ≤ bn for all n, and not for n starting at some point (i.e. eventually). The latter case

is substantially the same.

Let us prove (i). Since
∑
bn converges, it has a finite supremum and therefore an upper bound

M > 0. Since an ≤ bn for all n, it follows that
∑k

n=1 an ≤
∑k

n=1 bn ≤ M for all n, which means

that the partial sums of an have an upper bound and therefore they have a finite supremum. This

means that
∑
an is convergent by Theorem 11.1.29.

Let us prove (ii). Since
∑
an is divergent, its partial sums have no upper bound. So, from∑k

n=1 an ≤
∑k

n=1 bn it follows that the partial sums of bn have no upper bound as well (or this



124 CHAPTER 11. SEQUENCES, SERIES, AND POWER SERIES

would be an upper bound for the partial sums of an which we know do not have one). It follows

that the partial sums of bn are not bounded above, and therefore the sequence of partial sums is

divergent to ∞ by Theorem 11.1.29.

The Direct Comparison Test is useful because we can compare series with some series whose con-

vergence and divergence we already estabilished. For instance, typical series to use for comparison

are the p-series
∑ 1

np , and the geoemetric series
∑
arn.

Example 11.4.2. Consider the series
∑∞

n=1
lnn
n . Of course, the integral test can be applied in this

case. However, there is a very simple way of using the Direct Comparison Test in this case.

In fact, observe that lnn > 1 for all n ≥ 3. So, we have the inequality lnn
n > 1

n for all n ≥ 3.

Since we have already shown that
∑ 1

n is divergent, it follows that
∑ lnn

n is divergent as well.

11.4.1 Limit Comparison Test

The limit comparison test allows us to compare the convergence and divergence of series by com-

puting a limit of their quotients. This is more useful than the Direct Comparison Test when it is

less obvious that a certain inequality between the terms of the series exists.

Method 11.4.3 (Limit Comparison Test). Let
∑
an and

∑
bn be series with non-negative terms,

where bn 6= 0 for all n (or eventually for n large enough). Then, if

lim
an
bn

= c,

with c > 0 a finite number, then both series have the same behavior, i.e. they are either both

convergent or both divergent to ∞.

Proof. Since 0 < c < ∞, we can find positive numbers m and M such that m < c < M . Since
an
bn
−→ c, we have that we can find a ν such that m < an

bn
< M for n ≥ ν, from the definition of limit.

Therefore, we have that eventually (i.e. for n ≥ ν) mbn < an < Mbn. So, if
∑
bn is convergent, it

follows that also
∑
Mbn is convergent by Theorem 11.2.10. By the Direct Comparison Test, then

we will have that
∑
an is convergent. If bn diverges, so does

∑
mbn (again by Theorem 11.2.10,

since otherwise
∑
bn =

∑ 1
mmbn would be convergent) and using the Direct Comparison Test we

find that
∑
an diverges as well. This completes the proof.

Example 11.4.4. Consider the series
∑∞

n=1
2n2+3n√

5+n5
.

The behavior of the fraction 2n2+3n√
5+n5

is dominated by the largest terms in the numerator and

the denominator, which are 2n2 and
√
n5, respectively. So, we compare the fraction with the series

2n2
√
n5

. Also, observe that
∑ 2n2
√
n5

=
∑

2 1√
n

is a divergent series, since we know that p-series with

p ≤ 1 diverge.
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We compare 2n2+3n√
5+n5

and 2 1√
n

. By taking the quotient we find

2n2+3n√
5+n5

2 1√
n

=
2n2 + 3n√

5 + n5
·
√
n

2

=
n

5
2 + 3

2n
3
2

√
5 + n5

=
1 + 3

2n√
5
n5 + 1

−→ 1 + 0√
0 + 1

= 1 > 0.

So, the Limit Comparison Test allows us to say that
∑ 2n2+3n√

5+n5
and

∑
2 1√

n
are either both convergent

or both divergent. Since
∑

2 1√
n

is divergent, as already pointed out, it means that the series∑∞
n=1

2n2+3n√
5+n5

is divergent as well.

11.5 Alternating Series and Absolute Convergence

The convergence tests we have discussed in the previous section refer to series that have positive

terms. Of course, one might wonder how to deal with the case of series that also have negative terms

too. If the series has only negative terms, then one can consider the series given by multiplying

all terms by a negative sign. This reduced the problem to what we have done for positive terms,

since if the series
∑

(−an) converges, then the series
∑
an converges as well. If a series has only

finitely many negative terms, then one can simply proceed as in the previous section, since adding

finitely many negative terms would not change conveergence. The real issue is when the series has

infinitely many negative terms and positive terms. A typical example is a series with alternating

positive and negative terms, for example
∑

(−1)n 1
n . For such series, we have the following test.

Method 11.5.1 (Alternating Series Test). If the alternating series
∑∞

n=0(−1)nan, with all an > 0,

satisfies the conditions

(i) an+1 ≤ an,

(ii) lim an = 0,

then the series is convergent.

Proof. We consider first the odd partial sums s2n+1, obtained by adding up to an odd index of the

series, e.g. s1, s3, s5, s7 and so on. We have s1 = a0 − a1, se = a0 − a1 + a2 − a3 = s1 + (a2 − a3),

and similarly s2n+1 = s2n−1 + (a2n− a2n+1) ≥ s2n−1. This shows that the sequence of partial sums

(with odd number of summands) is increasing. However, the grouping of the terms can be also

written as s2n+1 = a0 − (a1 − a2)− (a3 − a4)− · · · − (a2n−1 − a2n)− a2n+1. Since an+1 ≤ an, each

term a1 − a2, a3 − a4 and so on is negative. Therefore, the second way of writing s2n+1 shows

that we have s2n+1 ≤ a0. This means that s2n+1 is a monotonic increasing sequence that has an

upper bound. It must therefore be convergent by Theorem 11.1.29. We denote lim s2n+1 = s the

limit of the sequence of partial sums. We now consider the even terms of the partial sums s2n. In

this case we can write s2n = s2n−1 + a2n which is a sum of an odd partial sum and an extra term.
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Taking limits of both sides of the previous equation, and considering that lim a2n = lim an = 0

by assumption, we find that s2n −→ s as well. This means that both odd and even terms of the

partial sums converge to s. It can be shown (and it is left as a simple exercise to the reader) that

this means that lim sn = s, therefore completing the proof.

As usual, we can have the series starting at n different from 0, without changing the previous

result.

Example 11.5.2. Let us consider the sequence
∑∞

n=1(−1)n 1
n . We already know that the series∑ 1

n is divergent. However,
∑∞

n=1(−1)n 1
n satisfies the conditions of the Alternating Series Test.

In fact, obviously one has 1
n+1 ≤

1
n , and also 1

n −→ 0. So, the test gives us that the series is

convergent.

The following definition is of great importance.

Definition 11.5.3. The series
∑
an is said to be absolutely convergent if the series of absolute

values
∑
|an| is convergent. A series is conditionally convergent if

∑
an is convergent, but

∑
|an|

is not convergent.

Example 11.5.4. From the previous example, we have seen that
∑∞

n=1(−1)n 1
n is convergent.

However,
∑∞

n=1 |(−1)n 1
n | =

∑∞
n=1

1
n is not convergent, as we have previously seen. So,

∑∞
n=1(−1)n 1

n

is an example of a conditionally convergent series.

On the contrary,
∑∞

n=1(−1)n 1
n2 is absolutely convergent, since

∑∞
n=1 |(−1)n 1

n2 | =
∑∞

n=1
1
n2 is a

p=series with p = 2 > 1.

Theorem 11.5.5. If a series is absolutely convergent, then it is convergent.

Proof. We observe that an ≤ |an| is always true, since if an is positive, then |an| = an, and if an
is negative, then an < 0 < |an| holds true. Moreover, an + |an| ≥ 0 since if an is negative then

|an| = −an and we have an + |an| = 0, while if an ≥ 0 we just have an + |an| = an + an ≥ 0.

Therefore, 0 ≤ an + |an| ≤ 2|an|. In the assumption that
∑
an is absolutely convergent, we obtain

that also
∑

2|an| is convergent (since it is the series of absolute values just multiplied by a number,

see Theorem 11.2.10). By the Direct Comparison Test, it follows that
∑

(an + |an|) is convergent.

This means that
∑
an =

∑
(an + |an|) −

∑
|an| is the difference of two convergent series, which

means it is convergent (again, see Theorem 11.2.10). This completes the proof.

Example 11.5.6. We want to show that the series
∑∞

n=1
cosn
n2 is convergent.

We cannot use the Alternating Series Test, since the series has negative and positive terms, but

they do not alternate. Let us consider the series of absolute values
∑∞

n=1 |
cosn
n2 |. Since | cosx| ≤ 1

always (so in particular for all n), we can write | cosn
n2 | ≤ 1

n2 . We know that the p-series
∑∞

n=1
1
n2

is convergent. So, from the Direct Comparison Test, it follows that
∑∞

n=1 |
cosn
n2 | is also convergent,

since all the terms are smaller than the terms of
∑ 1

n2 which is convergent. It follows that
∑∞

n=1
cosn
n2

is absolutely convergent. Then, by Theorem 11.5.5, it follows that it is also convergent.
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11.6 The Ratio and Root Tests

One problem with the tests discussed until now, execpt the Alternating Series Test, is that they are

based on comparisons. This means, that we need to compare our series with some other series whose

behavior is known to us. In this section we will see that there are some techniques to determine

convergence/divergence that do not depend on comparisons with other series, but only refer to the

series whose behavior is the object of our study.

The Ratio Test

Method 11.6.1 (Ratio Test). The following facts hold.

(i) If lim |an+1

an
| = L < 1, then the series

∑
an is absolutely convergent, and therefore convergent.

(ii) If lim |an+1

an
= L > 1, where L can also be ∞ here, then the series

∑
an is not convergent. If

an is positive for all n (or eventually), then the series is divergent to ∞.

Proof. We first prove (i). From the fact that L < 1, it follows that we can find a number r such

that L < r < 1 holds. The idea is to compare the given series with a geometric series with this

r, which is convergent because r < 1. From the fact that lim |an+1

an
| = L < r, it follows that for n

large enough, say n ≥ ν, we will have |an+1

an
| < r. Therefore, we have |an+1| < anr. Then, taking

n = ν we have

|aν+1| < |aν |r
|aν+2| < |aν+1|r < |aν |r2

|aν+3| < |aν+2|r < |aν |r3

...

|aν+k| < |aν |rk

Observe that the series
∑∞

k=1 |aν |rk is a geometric series which is convergent since r < 1. Therefore,

we have that the series
∑∞

n=ν+1 |an| = |aν+1+· · ·+aν+k+· · · is also convergent because of the Direct

Comparison Test, since each of its terms aν+k are smaller than |aν |rk. Since the series
∑∞

n=ν+1 |an|
differs from

∑∞
n=1 |an| only by finitely many terms, ν of them, if follows that

∑∞
n=1 |an| is convergent

too, since finitely many terms cannot change the character of a series. So,
∑∞

n=1 an is absolutely

convergent, and therefore convergent by Theorem 11.5.5.

We now prove (ii). From the fact that L > 1, we find that eventually |an+1 > an for all n ≥ ν.

Therefore, the limit lim an cannot be zero, and the Divergence Test implies that the series cannot

be convergent. If the terms are all non-negative, the sequence of partial sums has a limit that

cannot be finite, and it is therefore infinite by Theorem 11.1.29. This completes the proof.

Remark 11.6.2. Observe that when we are unlucky enough to get lim |an+1

an
| = 1, the Ratio Test is

inconclusive, meaning that we cannot determine the behavior of the series using it (other methods

will be needed).

Example 11.6.3. Consider the series
∑∞

n=1(−1)n n
3

3n . We want to determine whether it is conver-

gent or divergent.
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We have

|an+1

an
| = |

(−1)n+1(n+1)3

3n+1

(−1)n n
3

3n

|

=
(n+ 1)3

3n+1

3n

n3

=
1

3
(
n+ 1

n
)3

=
1

3
(1 +

1

n
)3 −→ 1

3
< 1.

The Ratio Tesst therefore shows that the series is absolutely convergent, and therefore it is conver-

gent.

The proof of the following test is completely analogous to the proof of the Ratio Test, and it is

left as an exercise to the reader.

Method 11.6.4 (Root Test). The following facts hold.

(i) If lim n
√
|an| = L < 1, then the series

∑
an is absolutely convergent, and therefore convergent.

(ii) If lim n
√
|an| = L > 1, where L can also be ∞ here, then the series

∑
an is not convergent.

If an is positive for all n (or eventually), then the series is divergent to ∞.

Remark 11.6.5. As in the case of the Ratio Test, when the limit is 1, the Root Test will not give

any conclusive result, and other methods need to be used.

11.7 Power Series

We now study power series, which are series where the variable x appears as well. In a sense, one

can think of a power series as an object that gives a series whenever we choose a certain value for

x. Of course, understanding for what values of x this series is convergent is of great importance.

For all those x such that the series is convergent, we obtain a number, and this means that we can

identify this with a function – this object takes an input, a numerical value of x, and returns a

number, the number of convergence of the series.

We begin with a definition.

Definition 11.7.1. A power series is a series of type
∑∞

n=0 cnx
n, where x is a variable and the

constants cn are called coefficients of the series. More generally, a power series has the form∑∞
n=0 cn(x− a)n, and in this case we say that the power series is centered at a.

As mentioned above, for all x such that
∑∞

n=0 cnx
n is convergent, we obtain a function by

setting f(x) =
∑∞

n=0 cnx
n. Such a function is very similar to a polynomial, with the fundamental

difference that the summands are infinitely many.

Example 11.7.2. Taking cn = 1 for all n, we obtain the power series
∑∞

n=0 x
n which is a geometric

series. We already know that it is convergent whenever −1 < x < 1. So, we have a function

f(x) =
∑∞

n=0 x
n which is well defined on the open interval (0, 1). Since we also know what
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numbers the geometric series converges to, we can even give in this case an analytical expression

of the corresponding function. We have f(x) = 1
1−x . However, this is not always possible, since it

is not simple to determine where a series converges to.

Example 11.7.3. We want to find for what values of x the power series
∑∞

n=1
1
n(x−3)n converges.

Here, cn = 1
n , and a = 3.

Let us use the Ratio Test. Given a chosen x, the general term of the series can be written as

an = 1
n(x− 3)n. So, we have

|an+1

an
| = |(x− 3)n+1

n+ 1
· n

(x− 3)n
|

= | 1

1 + 1
n

(x− 3)| −→ |x− 3|.

The Ratio Test tells us that whenever |x− 3| < 1, the series is absolutely convergent, and therefore

convergent. Also, when |x − 3| > 1 the series is divergent. Since |x − 3| < 1 whenever 2 < x < 4,

we have found that the series is convergent when x is in (2, 4), and divergent whenever x is in

(−∞, 2) ∪ (4,∞). However, x = 2 and x = 4 corresopnds to cases when |x− 3| = 1, and we know

that the Ratio Test does not give any conclusions in this case. Therefore, we have to analyze the

cases x = 2 and x = 4 separately. When x = 4, one can immediately see that the series becomes∑∞
n=1

1
n which we already know is divergent (this is a p-series). When x = 2, the series becomes∑∞

n=1(−1)n 1
n . We have previously seen, by means of the Alternating Series Test, that this series is

convergent. This completes all the possible cases for x. Therefore, the series is convergent for x in

[2, 4), and divergent otherwise.

The faact that in the previous cases the set of points of x such that the power series is convergent

is an interval is not an accident. In fact, we have the following result.

Theorem 11.7.4. Let
∑∞

n=0 an(x− a)n be a power series. Then there are only three possibilities:

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) There exists a number ρ > 0 such that the series converges when |x − a| < ρ, and diverges

when |x− a| > ρ.

In fact, one can unify the last two cases in the previous result, adding tan extreme case. Taking

ρ = ∞, one has that |x − a| < ∞ always, so the series is convergent for all x. In case (i) one also

says that ρ = 0 (even though |x−a| < 0 is not true). The number (or infinity) ρ is called the radius

of convergence of the series, and the corresponding interval is called the interval of convergence. So,

Theorem 11.7.4 states that given a power series, the values of x such that the series converges lie

in an interval (the interval of convergence). In case (i), this interval has zero radius, and it consists

of a single point x = a. In case (ii), the series converges over the whole (−∞,∞) and the radius

of convergence is ρ = ∞. In case (iii), the radius is a positive (finite) number, and the interval of

convergence is (a − ρ, a + ρ). The boundary cases x = a ± ρ need to be determined on a case by

case basis, as any type of behavior might happen.
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Example 11.7.5. We want to find the radius and interval of convergence of the series
∑∞

n=0(−3)n xn√
n+1

.

We use again the Ratio Test, where an = (−3)n xn√
n+1

. We have

|an+1

an
| = |(−3)n+1xn+1

√
n+ 2

·
√
n+ 1

(−3)nxn
|

= | − 3x

√
n+ 1

n+ 2
|

= 3|x|

√
1 + 1

n

1 + 2
n

−→ 3|x|.

Therefore, by the Ratio Test, whenever 3|x| < 1 the series converges. This means that the series

converges when −1
3 < x < 1

3 . Also, the series diverges when x < −1
3 and x > 1

3 . Therefore, the

radius of convergence is ρ = 1
3 . The only two undetermined cases are x = −1

3 ,
1
3 . As usual, they

need to be handled separately. When x = −1
3 the series becomes

∑ 1√
n+1

which is divergent (this

is a p-series with p = 1
2 < 1). When x = 1

3 the series becomes
∑ (−1)n√

n+1
which is convergent by the

Alternating Series Test. We have therefore found that the interval of convergence is (−1
3 ,

1
3 ].

11.8 Power Series Expansions

The scope of this section is to investigate properties of functions that are written as power series.

For example, we have already seen that in the interval (−1, 1), the function f(x) = 1
1−x can be

written as a power series 1
1−x =

∑∞
n=0 x

n = 1 + x+ x2 + · · ·+ xn + · · · .
In such a situation, when a function f(x) can be written as a power series f(x) =

∑∞
n=0 cn(x−a)n

centered at some a, we say that f(x) has a power series expansion, or a power series representation.

Example 11.8.1. Let us consider the function f(x) = 1
1+x2

. We want to express the function as

a power series in the interval of convergence of the series.

Observe that we can write f(x) = 1
1−(−x)2

. So, we can use the previous result 1
1−x where we

are now replacing x by (−x)2. We obtain f(x) = 1
1−(−x)2

=
∑∞

n=0(−x2)n =
∑∞

n=0(−1)nx2n. The

interval of convergence of the power series, which is also the interval where f(x) can expressed as

a power series is the set of points where | − x2| < 1, which gives us |x| < 1, so (−1, 1) again.

One property of polynomials is that differentiating and integrating them is very easy. This fact

is true even when considering power series. Observe that this is not automatically true, since they

are infinite sums, and therefore is something that does not follow from the properties of polynomials.

We have the following result.

Theorem 11.8.2. Let f(x) =
∑∞

n=0 cn(x − a)n be a function expanded as a power series with

radius of convergence ρ. Then f(x) is differentiable in (a− ρ, a+ ρ) and

(i) f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =
∑∞

n=1 ncn(x− a)n−1.

(ii)
∫
f(x)dx = c+ c0(x− a) + c1

(x−a)2

2 + c2
(x−a)3

3 + · · · = c+
∑∞

n=0 cn
(x−a)n+1

n+1 .

Moreover, the radii of convergence of the two power series in (i) and (ii) are both ρ.
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Remark 11.8.3. Observe that while the radii of convergence are the same, the endpoints of the

intervals might be points where convergence changes. So, the original series might converge at the

point a+ ρ, but the differentiated series does not converge there.

Example 11.8.4. We want to find the power series representation, if it exists, of the function

f(x) = arctan(x).

Observe that f ′(x) = 1
1+x2

. Therefore, we can expand f ′(x) using the results for the previous

example. We have f ′(x) =
∑∞

n=0(−1)nx2n. Applying Theorem 11.8.2 we can now integrate the

series to obtain the expansion of f(x). We get

arctanx =

∫
1

1 + x
dx

=

∫ ∞∑
n=0

((−1)nx2n)dx

= c+
∞∑
n=0

(−1)n
x2n+1

2n+ 1
.

The radius of convergence of
∑∞

n=0(−1)nx2n is 1, as we previously determined, and therefore the

radius of convergence of c+
∑∞

n=0(−1)n x
2n+1

2n+1 is 1 as well by Theorem 11.8.2.

11.9 Taylor and Maclaurin Series

In this section we discuss how to find power series expansions of functions.

We start with the assumption that a function f(x) can be written as a power series in an interval

of radius ρ around x = a. So, for all x such that |x− a| < ρ, it holds

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · =
∞∑
n=0

cn(x− a)n.

How can we determine the coefficients cn in a more systematic way than we did in the previous

section?

Theorem 11.9.1. Assume that f has a power expansion at x = a, so that

f(x) =
∞∑
n=0

cn(x− a)n,

for |x− a| < ρ. Then, the coefficients cn are determined by the formula

cn =
f (n)(a)

n!
. (11.10)

Proof. Observe that upon evaluating f in x = a (the center of the interval), all terms in the power

series containing (x− a)n will vanish. In other words, it must hold f(a) = c0. So, just by plugging

x = a we have determined the first coefficient. Of course, our luck with this approach terminates

here, it seems. However, we can apply Theorem 11.8.2 to turn c1 into the lowest degree term
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by taking a derivative! In this way, we will be able to proceed as before and get c1. In detail,

differentiating f(x) using Theorem 11.8.2 we get

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + · · · ,

which shows that all terms but c1 are multiplied by some power of (x − a). This means that

f ′(a) = c1, since (x− a) vanishes when x = a.

How about c2? The idea is simple. We play again the same game: First we differentiate, so that

c2 has lowest degree (i.e. 0) in (x−a), and then we evaluate at x = a. Using again Theorem 11.8.2

we get

f ′′(x) = 2c2 + 2 · 3 · c3(x− a) + 3 · 4 · c4(x− a)2 + 4 · 5 · c5(x− a)3 + · · ·

from which, upon evaluating at x = a we obtain f ′′(a) = 2c2, and therefore c2 = f ′′(a)
2 .

In general, to have the term cn as the degree zero one, i.e. the one which is not multiplied by

any powers of (x − a), we need to take n derivatives of f(x). Each time we differentiate, using

the power rule (for infinite series, i.e. Theorem 11.8.2) we will have all the numbers from 2 to n

multiplied together: 2 · 3 · 4 · · · (n− 1) · n. This number is the factorial n!. So, to obtain cn we just

need to evaluate the nth derivative of f at x = a, and divide by n! and we get

cn =
f (n)(a)

n!
,

which is precisely Equation (11.10).

Definition 11.9.2. We have therefore found that if a function can be expanded in a power series

about x = a, it has the form

f(x) =

n∑
n=0

f (n)(a)

n!
(x− a)n. (11.11)

This is called the Taylor series (or Taylor expansion) of f about a (or centered at a, or at a). In

the particular case where a = 0, the series is called Maclaurin series, and it takes the simpler form

f(x) =
n∑
n=0

f (n)(0)

n!
xn. (11.12)

Example 11.9.3. Let f(x) = ex be the exponential function.

We want to find the Maclaurin series for the exponential. We know that taking derivatives of

the exponential, gives again the exponential. So, we know that f (n)(x) = ex for all n. Therefore,

f (n)(0) = 1 for all n. Using Equation (11.12) with f (n)(0) = 1 we get the series

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

1

n!
xn.

Let us now consider the convergence of this series by means of the Ratio Test. We have

|an+1

an
| = | x

n+1

(n+ 1)!
· n!

xn
|

=
|x|
n+ 1

−→ 0 < 1.
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This limit is independent of the value of x. In other words, by the Ratio Test, no matter what x we

pick, the series will be convergent. So,
∑∞

n=0
1
n!x

n defines a function over the whole real numbers.

At this point, if we only knew that the exponential function has a Maclaurin expansion, that

would mean that what we have found is exactly its expansion (observe that Theorem 11.9.1 states

that if f has an expansion, then it is given by the formula we have found, but we do not yet know

whether ex has an expansion).

From the previous example, it has become clear that our question has now become: When can

a function be written as a power series. Of course, from Theorem 11.8.2 such a function needs to

have infinitely many derivatives, since each time we have a series, we can take its derivative, and

we can keep doing this over and over.

Our objective is to find when

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

Since this is a series, equality means that the limit of the partial sums converges to f(x). Let us

call the partial sums

Tn(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k (11.13)

= f(a) +
f ′(a)

1
(x− a) +

f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n. (11.14)

So, Tn(x) is a polynomial of degree n, called the nth-degree Taylor polynomial of f at a. The whole

Taylor series can be written by a Taylor polynomial up to n, plus the remainder, i.e. all the higher

powers that are not included in Tn(x):

∞∑
n=0

f (n)(a)

n!
(x− a)n = Tn(x) +

∞∑
k=n+1

f (k)(a)

k!
(x− a)k.

We therefore set Rn(x) = f(x) −
∑n

k=0
f (k)(a)
k! (x − a)k = f(x) − Tn(x), which is the remainder of

the Taylor series. In other words, Rn(x) is what is left of the function once we take out the Taylor

polynomial of degree n. In the assumption that limnRn(x) = 0 for all x in some interval, then we

have

∞∑
n=0

f (n)(a)

n!
(x− a)n = lim

n
Tn(x)

= lim
n

[f(x)−Rn(x)]

= f(x)− lim
n
Rn(x)

= f(x).

So, if the remainder goes to zero for all x, the Taylor series converges to f(x) for all x, which is

what we wanted to understand in the first place. We therefore have the following theorem.

Theorem 11.9.4. If limnRn(x) = 0 for |x − a| < ρ, then f is equal to its Taylor series on the

interval (a− ρ, a+ ρ).
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We now have naturally found another problem: When does limnRn(x) = 0 hold? The following

result is a powerful tool to answer this question based on a given function f .

Theorem 11.9.5 (Taylor’s Inequality). If |f (n+1)(x)| ≤ M for all x such that |x − a| ≤ f , for

some d > 0, then

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1

for |x− a| ≤ d.

Proof. We prove the result for n = 1, since the same procedure (performing more integrations!)

can be performed when n > 1. So, we assume that |f ′′(x)| ≤ M for |x − a| ≤ d, and therefore

f ′′(x) ≤M . Let us consider a ≤ x ≤ a+ d. In fact, an analogous proof works when a− d ≤ x ≤ a.

Integrating |f ′′(x)| ≤M for |x− a| ≤ d on both sides, we get∫ x

a
f ′′(t)dt ≤

∫ x

a
Mdt.

Since f ′(x) is an antiderivative of f ′′(x), we have

f ′(x)− f ′(a) ≤M(x− a),

from which

f ′(x) ≤ f ′(a) +M(x− a).

Integrating again the inequality we have∫ x

a
f ′(t)dt ≤

∫ x

a
[f ′(a) +M(t− a)]dt,

which gives us

f(x)− f(a) ≤ f ′(a)(x− a) +M
(x− a)2

2
,

and therefore

f(x)− f(a)− f ′(a)(x− a) ≤M (x− a)2

2
. (11.15)

Observe now that T1(x) = f(a)+f ′(a)(x−a), and therefore f(x)−f(a)−f ′(a)(x−a) = f(x)−T1(x).

But also, we have seen before the proof of Theorem 11.9.4 that f(x) − Tn(x) = Rn(x). So, using

(11.15) we find that

R1(x) ≤ M

2
(x− a)2.

We can repeat the same procedure for f ′′(x) ≥ −M , which also follows from |f ′′(a)| ≤M , and we

would obtain

R1(x) ≥ −M
2

(x− a)2.

So, combining the previous two inequalities we have found

|R1(x)| ≤ |M
2

(x− a)2|,

which completes the proof.
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Observe that here the crucial thing is that all the derivatives are bounded by some constant, so

that the number M = ed does not depend on n.

Remark 11.9.6. Theorem 11.9.5 is useful because of the limit limn
xn

n! = 0. So, the right hand

side of the inequality of the theorem goes to zero as n goes to infinity.

Example 11.9.7. Let us go back to the example of the exponential function ex, and let us verify

that this is the limit of its Maclaurin series.

When f(x) = ex, all derivatives of f give also ex: f (n)(x) = ex. So, we can take M to be ed,

and apply Theorem 11.9.5 (with a = 0) to get

|Rn(x)| ≤ ed

(n+ 1)!
|x|n+1

whenever |x| ≤ d. Since limn
rd

(n+1)! |x|
n+1 = 0, it follows that limn |Rn(x)| = 0 by the Squeeze

Theorem, and therefore also limnRn(x) = 0. Since for any x we can find some d > x, we can

proceed as above, we find that limn |Rn(x)| = 0 for all x. Applying Theorem 11.9.4 it follows that

the exponential function equals its Maclaurin series for all x, i.e. ex =
∑∞

n=0
xn

n! for all x.

We now consider some other examples of Taylor series of particularly important functions, such

as sine and cosine.

Example 11.9.8. Let us consider the sine function. We compute the Maclaurin series of f(x) =

sin(x). We have

f(x) = f(0) +
f ′(0)

1!
+
f ′′(0)

2!
+
f ′′′(0)

3!
+
f (iv)(0)

4!
+
f (v)(0)

5!
· · ·

= sin(0) +
cos(0)

1!
+
− sin(0)

2!
+
− cos(0)

3!
+

sin(0)

4!
+

cos(0)

5!
+ · · ·

= x− x3

3!
+
x5

5!
+ · · ·

=

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

where in the last step we have used the fact that the derivatives of sine and cosine repeat the same

pattern over and over.

Since the derivatives of sine are all bounded (they are all sines and cosines with a ± sign, and

therefore their absolute value is bounded by 1), we can repeat the same reasoning that we applied

for the exponential function, finding that the Taylor series of sine converges to sin(x) for all x. In

other words, we have

sin(x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

for all x.

A similar approach can be used for the cosine function, giving

cos(x) =
∞∑
n=0

(−1)n
x2n

(2n)!
,

for all x.



136 CHAPTER 11. SEQUENCES, SERIES, AND POWER SERIES



Chapter 12

Parametric Equations and Polar

Coordinates

Curves in space, such as a circle or an ellipse, or more generally curves that are not geometric

objects in space, do not usually correspond to a function relating x and y. In other words, you

cannot write y = f(x). However, it turns out that it is still possible to treat them using calculus.

Consider for instance the motion of a particle p in a 2 dimensional plane. Generally speaking, if the

particle has an arbitrary trajectory, we cannot treat this as a function. However, both coordinates,

x and y are expressed in terms of the time coordinate t. So, x and y are functions of t. In other

words, for such a curve, while the trajectory is not a function, the coordinates are indeed functions

of t, which is the independent variable. This is a curve defined by a parametric equation.

12.1 Curves and Parametric Equations

We suppose that x and y are both functions of a variable t, which is called the parameter. Then,

we have x = f(t) and y = g(t). These are called parametric equations. When we select a value for

t, we obtain a corresponding point (x, y) in the plane as (x, y) = (f(t), g(t)). The latter is called a

parametric curve. While t is very often time, this is not always the case, so it is useful to imagine

trajectories of objects paramtrized by time, but this is not the most general situation. For instance,

t might very well be an angle, in which case people usually write θ for it.

Example 12.1.1. A very simple example of parametric curve is given by the circle. Here (x, y) =

(cos θ, sin θ).

Example 12.1.2. Another example is the Lissajous figure, defined as (x, y) = (cos θ, sin 2θ).

We now consider the notion of tangent lines to parametric curves. The idea here lies in the

fact that we can locally write the cruve as a function y of x, even though this is no true for the

whole curve. Locally here means that given a point, we can do this around this point. For instance,

imagine to take the circle. We know that the circle can be written as a union of two functions

y =
√

1− x2 and y = −
√

1− x2, which are obtained from the equation x2 + y2 = 1 by solving

for y. In a parametric curve, we can do this locally, but x will still depend on t. When we write

137
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y = q(x(t)), for a function q, this means that we can differentiate y with respect to t by using the

chain rule. We have

dy

dt
=
dy

dx

dx

dt
.

Now, in the assumption that dx
dt 6= 0, we find

dy

dx
=

dy
dt
dx
dt

. (12.1)

This equation allows us to find the slope of the tangent to the curve at a point. For the second

derivative, one proceed in exactly the same way, but replacing y by dy
dx . We get

d2y

dx2
=

d

dx
(
dy

dx
) =

d
dt(

dy
dx)
dx
dt

. (12.2)

Example 12.1.3. We want to study the curve C: x = t2, y = t3 − 3t.

Observe first that when t = ±
√

3, the value of y is zero. So, the point (3, 0) is repeated twice.

We compute the slope of C using Equation (12.1). We have

dy

dx
=

dy
dt
dx
dt

=
3t2 − 3

2t
.

We see that dy
dx = 0 when t = ±1, while the derivative is not defined when t = 0. At the point (3, 0)

the curve C has two tangents, since the curve passes through the point twice. The derivatives have

values dy
dx = ±

√
3 for t = ±

√
3. We can also study the concavity of C by considering the second

derivative through Equation (12.2). We have

d2y

dx2
=

d
dt(

dy
dx)
dy
dt

=
d
dt(

3t2−3
2t )

2t
=

3t2 + 3

4t3
.

It follows that the concavity is downward when t < 0 and upward when t > 0.

Exercise 12.1.4. Draw the curve of the previous example.

To find the area under the curve x = f(t) and y = g(t), we can use the integration

A =

∫ b

a
ydx =

∫ β

α
g(t)f ′(t)dt,

where α is the value of t such that x = a, β is the value of t such that x = b, and we have used

the fact that x = f(t) means that dx = f ′(t)dt. To find the area enclosed in a curve, we can take

a difference of areas computed using the previous formula.

We can also compute the arc length of a curve C given in parametric form x = f(t), y = g(t).

In fact, we can write our curve locally as a union of curves C1, . . . , Ck such that in each curve Ci is

given by a function y = F (x). Then, we can use the formula for the computation of the arc length
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where x = f(t). Then, assuming that ai = f(αi) and bi = f(βi), we have

Li =

∫ bi

ai

√
1 + (

dy

dx
)2dx

=

∫ βi

αi

√√√√1 + (
dy
dt
dx
dt

)2
dx

dt
dt

=

∫ βi

αi

√
(
dx

dt
)2 + (

dy

dt
)2dt.

Once we put together all the terms Li we obtain the following result.

Theorem 12.1.5. If a curve C is given by parametric equations x = f(t) and y = g(t) where

f and g have continuous derivative, and where α ≤ t ≤ β, and C is traversed exactly once as t

increases from α to β, then the length of C is

L =

∫ β

α

√
(
dx

dt
)2 + (

dy

dt
)2dt.

The polar coordinate system is based on the observation that given a point P ≡ (x, y) in the

Cartesian plane, there is a unique circle passing from P , and with center in the origin O ≡ (0, 0). So,

to describe the point P , we can use the radius of such a circle, which is also the distance of P from

O, and the angle between thesegment OP with a chosen fixed line, e.g. the ~x-axis. Therefore, the

pair of values (r, θ), given by radius and angle decribed above, completely and uniquely describes

the point P . This description of points in the plane is called the polar coordinate system. Polar

coordinates (r, θ) are given by a value r ≥ 0 and 0 ≤ θ < 2π. When r = 0 the point is the origin,

and we can think of it as being a circle of zero radius. Here the angle corresponding to it is not

uniquely defined.

Of course, we would like to be able to pass from the Cartesian coordinates to polar coordinates

when needed. To do this, one uses the same principles that relate cosine, sine and the points on the

unit cricle. The only difference is that now the radius is not 1, but r possibly different from 1 (but

strictly larger than 0). Given (r, θ) in polar coordinates, we can obtain the Cartesian coordinates by

the equations x = r cos θ and y = r sin θ. For the opposite construction, given Cartesian coordinates

(x, y), we can obtain the polar coorindates as r2 = x2 + y2, and θ = arctan x
y if x 6= 0, θ = ±pi

2

when x = 0 depending on y = 1 or y = −1. Observe that for arctan to be defined, one obtains

values of θ between −π
2 and π

2 , so we can determine the angle θ in [0, 2π) after consideration of the

signs of x and y.

We now consider the problem of determininng tangents in polar coordinates. A polar curve is

given by a function of type r = f(θ), or more generally through an equation of type F (r, θ) = 0

which we will not consider here. Then, the corresponding Cartesian coordinates x and y are given

by x = r cos θ = f(θ) cos θ and y = r sin θ = f(θ) sin θ. Since both x and y depend on θ alone, we
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can compute the derivative as follows

dy

dx
=

dy
dθ
dx
dθ

=
df
dθ sin θ + f(θ) cos θ
df
dθ cos θ − r sin θ

=
dr
dθ sin θ + f(θ) cos θ
dr
dθ cos θ − r sin θ

,

where in the last equality we just rewrote f as r, since f is the function that relates the radius r

to θ.
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