
LECTURE NOTES MATH 2240 - LINEAR ALGEBRA

EMANUELE ZAPPALA

1. Introduction

Linear algebra is the branch of mathematics that studies systems of linear equations, and more

generally vector spaces, matrices and linear transformations between them. It is important in

formulating several real world problems in a first order approximation. By linear, it is meant that

there are no terms that are quadratic, cubic etc.

Example 1.1. The function f : R −→ R defined by f(x) = 3x is linear, while the function

g : R −→ R defined by g(x) = 3x2 is not linear (it is quadratic!).

Important applications of linear algebra can be found in artificial intelligence, where several algo-

rithms use linear maps as central components. Morevoer, in machine learning, neural networks are

obtained by concatenating several linear maps (deep learning) with certain objects called activation

functions in between. More advanced topics in mathematics such as functional analysis deal with

linear algebra applied to spaces of functions. Linear algebra is also a very common tool to model

real world systems.

Example 1.2. Consider a simplified economic system with 3 sectors: Coal (C), Electric (E) and

Steel (S). Each sector produces an output which can be possibly be bought by one other sector.

For instance, the output of the Electric sector can be distributed among Coal and Steel in some

fractions. Similarly for the other sectors. Suppose the outputs are distributed according to Table 1

If by pC , pE and pS we denote the price of the outputs of the three sectors, then in order to find

the equilibrium prices (i.e. when a sector sells as much as it gains), we find the system of equations
pC = 0.1pC + 0.5pE + 0.4pS

pE = 0.3pC + 0.4pE + 0.3pS

pS = 0.6pC + 0.2pE + 0.2pS

which we would need to solve. Using linear algebra we will be able to solve such a system of

equations.

These notes are based on the textbook [2], which has been used to teach this course. More

advanced references on the subject are [1, 3].

Coal Electric Steel Purchased by

0.1 0.3 0.6 Coal

0.5 0.4 0.2 Electric

0.4 0.3 0.2 Steel
Table 1. Simple linear economy with three sectors
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2. Systems of linear equations

2.1. Generalities. An equation is said to be linear if the only operations applied to the variables

appearing in it are multiplicaations by numbers and additions. In other words, a linear equation

in the variables x1, . . . xn is an equation that can be written as

a1x1 + · · ·+ anxn = b,(1)

for some real or complex numbers a1, . . . an, b, which are called coefficients and are known a priori

(they are determined by the problem at hand).

Example 2.1. An example is the equation

3x1 + 2x2 = 7.

A non-example (why?) is the equation

2 cos(x1) + x22 = 0.

A system of linear equations is a collection of several linear equations as above. For instance,

the linear economic example above (Example 1.2). Another example is{
2x1 +

√
3x2 = 2

x1 + 7x2 = 0.

In such a case we want to find values of x1 and x2 such that both equations are satisfied simul-

taneously. Here, the fact that we want to solve both equations at the same time is fundamental.

There might be cases where no solution exists, and we would also like to be able to know when this

happens.

In general, for systems of linear equations, there might be two scenarios. The first one, is when

no solutions exist. The second one is when there are solutions. In the second case, we also want to

understand when the solution is unique, or when there are many solutions and how we can describe

them in order to obtain them all. We call solution set the set of all possible solutions of the system.

If there are no solutions, then we say that the solution set is empty.

The geometric meaning of a linear equation as 2x1 +
√

3x2 = 2 is that of a line lying in the plane.

Therefore, a solution to a system of two linear equations in two variables is the intersection of the

two lines that correspond to the given equations. This helps us understand when the system has a

single solution, or when it has infinitely many solutions, and when it has no solution at all.

Question 2.2. How do you characterize the three cases mentioned above?

More generally, a system of equation has a unique solution, or infinitely many solutions, or no

solution at all. If a system has solutions, then it is said to be consistent, while if it has no solutions

it is said to be inconsistent.

Systems of linear equations can be more compactly represented by their matrix notation. A

matrix is a table of numerical values. The table has n rows and m columns and we index the

numerical values depending on their position in the table. For example, the entry a13 indicates the

number lying in the first row, and third column. To the system written above, we associate the

matrix

A =

[
2
√

3

1 7

]
.
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In this notation, we can write the system as

Ax = B,

where

x =

[
x1
x2

]
and

B =

[
2

0

]
.

We are therefore induced to introduce the following product between a matrix (a table) and a

vector (a column): (Ax)i1 = Ai1x1 +Ai2x2, where (Ax) has entries of type i1 with 1 fixed because

it is a column.

The matrix A can be augmented to contain also the coefficients of B:

Ã =

[
2
√

3 2

1 7 0

]
.

2.2. Solving linear systems. The idea of solving a linear system is to use the first equation to

express the variable x1 in terms of the other variables, e.g. x2 in the case of two equations and

with two variables. Then, proceeding like this for all equations, we can finally have an equation in

a single variable, which is easy to solve. Plugging back the value in the previous expressions we

obtain a solution. This intuitive idea is illustrated in the following.

Example 2.3. We want to use this intuition to solve the system{
2x1 +

√
3x2 = 2

x1 + 7x2 = 0.

We strt by rewriting x1 in terms of x2 using the second equation (we could start from the first, the

second is simpler!). We have that x1 + 7x2 = 0, meaning that x1 = −7x2. Now, we can plug this

value of x1 in the first equation to obtain −14x2 +
√

3x2 = 2. This means that x2 = 2√
3−14 . Now

we can go back to the initial equation x1 = −7x2 and plug the value of x2 to obtain the value of x1:

x1 = −14√
3−14 . Since we have found the values of x1 and x2 such that both equatios simultaneously

hold, we have solved the system.

Elementary operations on systems of equations. There are three elementary operations that

can be performed on the equations of a system of equations, or equivalently on the corresponding

augmented matrix.

• We can replace any equation by the sum of itself and a multiple of another equation.

• We can exchange the order of two equations.

• We can multiply an equation by a nonzero multiple of itself.

For instance, consider the system {
2x1 +

√
3x2 = 2

x1 + 7x2 = 0.

We can replace the first equation by the sum of itself and −2 times the second equation. This looks

like 2x1 +
√

3x2 − 2x1 − 14x2 = 2 which gives the new equation
√

3x2 − 14x2 = 2. Compare the

procedure here and Example 2.3. Does it seem familiar? Of course, exchanging equations means

simply flipping the order they appear in the system. In Example 2.3 we did something like that,
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implicitly, when we started from the second equation rather than the first one. The third operation

simply says that between taking, say, the second equation or a multiple by 2 of it, it does not

change anothing. In fact, x1 + 7x2 = 0 if and only if 2x1 + 14x2 = 0. The same operations can

be applied directly to the augmented matrix corresponding to the system, since it contains all the

coefficients of the system.

Exercise 2.4. Translate the solution given in Example 2.3 in terms of matrix operations.

When performing the operations to the rows of an augmented matrix, we say that we are per-

forming elementary row operations on the matrix. Two systems whose augmented matrices are

related by elementary row operations are said to be row equivalent. If two systems have row equiv-

alent augmented matrices, then their solutions sets are the same. This gives us the idea that to

solve a system we can take the augmented matrix and perform row operations until we obtain some

very easy matrix whose system is very easy to solve.

Now the question arises. What is an augmented matrix whose corresponding system is easy to

solve? How does it look like? Well, we have already seen an instance of this. Let us do another

computation to make it clearer.

Example 2.5. We want to determine whether the following system is consistent (i.e. it admits at

least one solution): 
x1 + x2 − 3x3 = 0

−x2 + 2x3 = 3

2x1 + 5x3 = 1.

The corresponding augmented matrix is given by1 1 −3 0

0 −1 2 3

2 0 5 1

 .
Now, let us sum −2 times the first row to the last one. We get the new matrix1 1 −3 0

0 −1 2 3

0 −2 11 1

 .
Now, we can eliminate the −2 term in the last row by adding −2 times the second row to the third

one to get 1 1 −3 0

0 −1 2 3

0 0 7 −5

 .
Now, I claim that the system corresponding to such an augmented matrix is simple to solve. In

fact, this is the system 
x1 + x2 − 3x3 = 0

−x2 + 2x3 = 3

7x3 = −5.



LINEAR ALGEBRA 5

and we can immediately find the value of x3 = −5/7. We can then plug this in the other two

equations to find 
x1 + x2 − 3(−5/7) = 0

−x2 + 2(−5/7) = 3

x3 = −5/7.

from which we get x2 = −3− 10/7 = 31/7. Now we know both x2 and x3, and we can plug them

in the first equation to get x1.

So, whe have found that the system is consistent, and that the number of solutions is exactly 1.

2.3. Echelon form. Linear systems can get out of hand very rapidly in applications. They can

become very large, consisting very often of hundreds of thousands or millions of equations and

variables. Of course, this requires a more structured and algorithmical approach to solving these

systems. While the discussion up to know gives us a way of solving linear systems, it is still rather

inefficient. The Echelon form of a matrix allows us to produce an algorithm that is very effective

in solving very large systems of linear equations.

Before showing how to algorithmically obtain the echelon form of a matrix, we define what being

“echelon” means to start with.

Definition 2.6. A matrix is said to be in echelon form (more precisely row echelon form) if the

following properties hold:

• All rows consisting of all zeros are below rows having nonzero terms.

• Each leading entry of a row (i.e. the first nonzero term in a row) is in a column to the right

of the leading entry of the row above it.

Morevoer, a matrix is said to be in reduced echelon form (more precisely reduced row echelon

form) if it satisfies the additional properties:

• The leading entry in each nonzero row is 1.

• Each leading 1 is the only nonzero entry in its column.

Example 2.7. The following matrix is in echelon form:2 1 7

0 3 1

0 0 0.


The following matrix is in reduced echelon form:1 0

√
3

0 1 2

0 0 0.


Theorem 2.8. Any matrix A is row equivalent to a matrix in reduced echelon form. Moreover,

this matrix is unique.

When U is a matrix in (reduced) echelon form that is row equivalent to A, we say that U is a

(reduced) echelon form of A.
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Algorithm for finding the echelon form. We now want to describe an algorithm to find a

reduced echelon form of A through row operations.

Definition 2.9. A pivot position in the matrix A is the location of a leading 1 in the reduced

echelon form of A.

We show the procedure through an example, for simplicity.

Example 2.10. Consider the matrix

A =

0 3 1

2 1 5

3 2 1


and find a reduced echelon form for it.

First of all, select the first nontrivial column. This is the first column. Then, we need to have

zeros below nonzero entries. So, we switch the third row and the first one to have a leading

coefficient on top that is nonzero. We get 3 2 1

2 1 5

0 3 1


Now, we need to create zeros below the leading coefficient of the first row. This means that we

can subtract to the second row −2/3 times the first row. This gives3 2 1

0 1− 4/3 5− 2/3

0 3 1

 =

3 2 1

0 −1/3 13/3

0 3 1

 .
At this point, to obtain an echelon form, we need to perform another elementary row operation

and eliminate the leading term of the third row. To do this, we cannot use the first row, because

it would otherwise re-introduce a leading term in the first column. We subtract to the third row,

9 times the second row. We get 3 2 1

0 −1/3 13/3

0 0 39

 .
This is an echelon form for A. Now, we want to turn this echelon form into a reduced echelon form.

We take the rightmost pivot, which here is 39, and turn any element above it into a zero. To do

this, we just need to add to the second row, 1/9 times the third row. This would give us3 2 1

0 −1/3 0

0 0 39

 .
Similarly, we subtract 1/39 times the third row to the first one. And we get3 2 0

0 −1/3 0

0 0 39

 .
To complete, we take the rightmost pivot position that has nontrivial entries above. This is −1/3.

We want to cancel the term above it. To do so, we multiply the second row by 6, and add it to the
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first row to get 3 0 0

0 −1/3 0

0 0 39

 .
This is our reduced echelon form.

The algorithm now, more generally, is the following.

1 First, individuate the first column that has nontrivial elements. This is going to be the first

pivot.

2 Position a row whose leading coefficient lies in this column to the top of the matrix, using

the row exchange.

3 Use multiples of this row to annihilate all elements below the leading coefficient of it.

4 Repeat steps 1 to 3 to the submatrix obtained by considering only the rows below the first

one, and the columns on the right of the first nontrivial column.

5 At some point, the previous steps arrive at a point where there are no more operations

needed, and we have an echelon form.

6 Now, select the rightmost pivot, and sum multiples of this row to all the rows above that

have nontrivial elements above the pivot so that we get all zeros above it.

7 Repeat this step for the pivots moving leftward.

8 The algorithm stops at some point giving a reduced echelon form.

Solving linear systems whose augmented matrix is in reduced echelon form. Suppose we

have a system whose augmented matrix is in reduced echelon form, through the previous algorithm.

For example, this could be the matrix

Ã =

1 0 −5 1

0 1 1 4

0 0 0 0

 ,
which corresponds to the linear system {

x1 − 5x3 = 1

x2 + x3 = 4 .

We can solve the system now simply by writing x1 and x2 in terms of x3. We have{
x1 = 5x3 + 1

x2 = −x3 + 4 .

Observe that there are no restrictions on x3 and in this case we say that x3 is a free variable. In fact,

x3 can take any value, and this would force x1 and x2 to have a specific numerical value determined

through the equations above. This system is consistent, and it has infinitely many solutions.

One more computation.

Example 2.11. Consider the system of linear equations having augmented matrix

Ã =

1 3 2 0

0 0 1 2

0 −2 −1 1


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First, we swap second and third rows. 1 3 2 0

0 −2 −1 1

0 0 1 2

 .
Then, we cancel all elements above the element 1 in the third row, by summing the third row to

the second, and subtracting twice the third row to the first. We get1 3 0 −2

0 −2 0 3

0 0 1 2

 .
Then we do the same to cancel all elements above the −2 in the second row. We get1 0 0 5/2

0 −2 0 3

0 0 1 2

 .
This gives us the solution x1 = 5/2, x2 = −3/2 and x3 = 2.

Definition 2.12. For the augmented matrix of a linear system of equations in echelon form, we

say that a variable is free, if it does not correspond to a pivot position.

Example 2.13. Consider the matrix in reduced echelon form1 0 2 7

0 1 5
√

2

0 0 0 0

 .
Then, the variable x1 corresponds to the top left 1, which is pivot, and x2 corresponds to the

leading coefficients of the second row, which is pivot as well. However, x3 does not correspond to

any pivot position, and it is therefore free.

Theorem 2.14. A linear system is consistent if and only if in the echelon form of the augmented

matrix there is no row of type

[0 · · · 0 b].

If the linear system is consistent, then the solution is either unique (obtained by the substitution

procedure shown above), or it has infinitely many solutions when it has free variables.

3. Vector equations through matrices

A vector is a matrix that consists of a single column. When we have a matrix consisting of

a single row, we will say that this is a row vector and say that this is the transpose of a vector.

Equality of vectors means that all the entries of each vector (in their respective positions) are the

same. For instance, the two vectors

v =

[
2

3

]
, w =

[
2

3

]
,

are equal, but the two vectors

v =

[
1

3

]
, w =

[
2

3

]
,

are not equal.
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Vectors can be added together (componentwise) and subtracted (componentwise) as

[
1

3

]
+

[
2

3

]
=

[
3

6

]
.

Also, we can multiply a vector v by a scalar (i.e. a number c) simply by multiplying all entries of

v by c, as in the following example

2

[
2

1

]
=

[
4

2

]
.

The use of vectors in terms of linear systems is the following. Consider a linear system whose

associated matrix is A, and whose augmented matrix Ã is obtained by adding a column consisting

of b1, . . . , bn. Then, we can write the system as

Ax = b,

where x =

x1...
xn

 is the vector of indeterminates (the variables), and b =

b1...
bn

 is the vector

containing all the entries of the column that we have to add to A to obtain Ã. Here, the product

between A and x has the meaning of a product of a matrix by a vector (a special case of a product

of a matrix by a matrix), and is defined as follows. The output of it is a vector, and the first entry

of the vector Ax is given by the sum of the product of the terms of the first row of A with the

elements of x (term by term). This is given by A11x1 + A12x2 + · · ·+ A1nxn. More generally, the

entry of Ax in position i is given by multiplying the ith row of A by the elements of x and summing

them up, as Ai1x1 +Ai2x2 + · · ·+Ainxn.

The set of vectors of type x =

a1...
an

, consisting of a column of n numbers, is denoted by Rn.

The space R2, in particular, is the set of vectors consisting of a pair of numbers x =

[
a1
a2

]
. Such

vectors correspond to the points in the plane. For instance, x =

1
...

1

 is shown in the plane as
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where the arrow goes from the point (0, 0) to the point (1, 1). Similarly, the vector x =

−1
...

−1

 is

shown in the plane as

The rules for summing and subtracting vectors take a geometric form on the plane, as in the

following case

which is in general called the parallelogram rule. To subtract two vectors, one takes the negative

of a vector, and then sum them following the previous graphical rule.

When dealing with R3, one can follow the same rules, but now the cartesian system is going to

be 3-dimensional. With higher dimensions it is more complicated to represent the vectors.

Question 3.1. What is the graphical depiction of the operation of multiplying a vector by a scalar?

Hint: take a vector in the plane, multiply it by 2, and draw what you obtain.

A linear system of equations can also be compactly represented as a vector equation using the

form

x1a1 + · · ·+ xnan = b.

The meaning of this equation is that the variables (as x1) multiply all the entries in the vector (the

rule of multiplying a vector by a scalar), and this gives a column as in a linear system of equation.

At the end, on the RHS of the equality, we have all the coefficients b.

Definition 3.2. For p vectors v1, . . . ,vp in Rn, and p coefficients c1, . . . , cp, we call the quantity

c1v1, . . . , cpvp a linear combination of the vectors v1, . . . ,vp. The set of linear combination of the

vectors v1, . . . ,vp is called the linear span, and it is denoted by the symbol

span{v1, . . . ,vp}.

In view of the previous definition, it follows that a vector equation of type

x1a1 + · · ·+ xnan = b
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has a solution if and only if the vector b lies in the span of the vectors a1, . . . ,an, where a1, . . . , an
are vectors in some Rk. Note that n was indicating the dimension of Rn before, but now it is the

number of vectors. This should not cause any confusion.

Geometric meaning of the span of two vectors. Before considering the case of two vectors,

let us fix a single vector v, and let us take the span of v. We want to describe this. Linear

combinations consist of multiplying vectors by some coefficeints, and then summing them together.

Since there is just a single vector here (which is v), this means that the only operation we can do

is to take multiples of it. Therefore, the span of v consists of all vectors obtained as av where a is

some number.

What we have just described is the geometric notion of a line! This is because fixed v, multiplying

it by scalars, we can only get all the points in the same direction, without ever getting out of this

direction. This relates to Question 3.1, where we have seen that multiplying by a scalar returns

the “same arrow” (vector), but with longer or shorter size.

Now, when we consider the span of two vectors, we are considering all the vectors that can be

written as av + bw. If w is proportional to v, i.e. we have w = kv for some number k 6= 0, then

w is in the space of v, and the span of v and w is the same as the span of v, so we are back to

the previous situation. When v and w are not proportional, all their linear combinations give us

vectors that lie on the same plane as v and w. Therefore, the span of v and w is the plane passing

through v and w.

3.1. System of equations, and matrix equations. We have seen above that we can write a

system of equations as a matrix equation of type Ax = b, where A is the matrix containing all the

coefficients, x is the vector of variables, and b is the vector of coefficients on the right hand side

of the equalities of the system. We want to use this equation to determine when the system has

solutions, and to obtain them.

Proposition 3.3. The equation Ax = b has a solution if and only if b is a linear combination of

the columns of A.

Theorem 3.4. Let A be an m×n matrix, and consider the matrix equation Ax = b. The following

conditions are equivalent.

• For each b in Rm, the equation Ax = b has a solution;

• Each b in Rm is a linear combination of the columns of A;

• The columns of A span Rm;

• A has a pivot in every row.

Solution sets of linear systems of equations. System of equations where b = 0, i.e. that can

be written in the form Ax = 0, are called homogeneous systems. There is a simple characterization

of the existence of solutions for such linear systems or, equivalently, the associated matrix equation.

Proposition 3.5. The homogeneous equation Ax = b has a nontrivial solution if and only if the

equation has at least one free variable.

Example 3.6. Consider the system of equations
3x1 + 5x2 − 4x3 = 0

−3x1 − 2x2 + 4x3 = 0

6x1 + x2 − 8x3 = 0
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Using the algorithm for finding a reduced echelon form, we see that the system (or better its

augmented matrix) is row equivalent to 1 0 −4
3 0

0 1 0 0

0 0 0 0


which gives us the system (equivalent to the one we started with)

x1 − 4
3x3 = 0

x2 = 0

0 = 0

Since −4
3 is a nontrivial entry that is not in a pivot position, it is going to be a free variable. This

means by Proposition 3.5 that the system has a nontrivial solution.

In fact, we can find the whole solution set. From the second equation we have x2 = 0. From

the first equation we have that x1 = 4
3x3. This means that whenever we pick a value for x3, we

automatically find the value for x1 such that the equation holds. This is because x3 is free. We

can give any value to x3. The values of x1 and x2 are not free, but they are given by 4
3x3 and 0

respectively. The solution set is given by all triples of numbers (43x3, 0, x3), where x3 is an arbitrary

number in R.

Let us now consider nonhomogeneous systems, which are systems where b 6= 0. The main

idea is that of finding solutions of the corresponding homogeneous equation (by discarding the b

term), and then obtaining all solutions for the original nonhomogeneous equation by translating

the homogeneous solution set.

Example 3.7. Consider the equation Ax = b where

A =

 3 5 −4

−3 −2 4

6 1 −8



and b =

 7

−1

−4

 We can see that the reduced echelon form of the augmented matrix Ã is given

by 1 0 −4
3 −1

0 1 0 2

0 0 0 0


which gives solution x1 = −1 + 4

3x3 and x2 = 2, with x3 free variable. One can see that the general

solution can be written in the form of

x = p + x3v,

where p =

−1

2

0

 and v =

4
3

0

1

 . This shows that to know all the solutions of the equation, we

have to know the vector v, take all its multiples, and then translate it by p. It turns out that

v is a solution to the homogeneous equation Ax = 0. So, from the homogeneous solutions, upon

translating by a vector we obtain all solutions of the nonhomogeneous equation.
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The result from the previous example is actually true in general.

Theorem 3.8. Suppose that Ax = b has a solution (for a given b), and let p be such a solu-

tion. Then, all the solutions to the equation are obtained as p + w, where w is a solution of the

homogeneous equation (Ax = 0).

3.2. Applications. We consider now an application of the study of linear systems of equations.

Namely, we consider how to balance a chemical reaction. Chemical reactions generally have re-

actants that very over time and the dynamics of such variation is of great interest in chemistry.

However, reactions very often tend to reach an equilibrium point. We will see that such a situation

can be studied with the tools we have learned so far.

The reaction obtained by burning propane is given by

x1 · C3H8 + x2 ·O2 −→ x3 · CO2 + x4 ·H2O.

This gives us a three dimensional space, where we have vectors

ch
o

 where the first entry is the

number of carbon (C) atoms, the second entry is the number of hydrogen (H) atoms, and the last

entry is the number of oxygen (O) atoms.

Balancing the reaction means that the atoms corresponding to each type (i.e. Carbon, Hydrogen

and Oxygen), need to be the same before and after the reaction (Lavoisier’s principle of mass

conservation). In other words, we have to get a linear equation for the vectors of type

ch
o

 where

x1, x2, x3 and x4 are such that the number of atoms are the same on both sides of the arrow in the

reaction. We get the equality

x1

3

8

0

+ x2

0

0

2

 = x3

1

0

2

+ x4

0

2

1

 .
Now, this equation can be turned into a system of equations which is

3x1 − x3 = 0

8x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0.

Solving this system (as we have done so far) gives us the solution for the balanced reaction.

3.3. Linear Independence. We have seen that the span of vectors is a useful notion to describe

the solution set of some matrix equations, and therefore of their associated systems. However, it

can happen that given certain vectors v1, . . . ,vn, the information that some of the vectors carry is

redundant. For instance, consider the simple case of two vectors v1 and v2 where

v1 =

1

0

1

 , v2 =

2

0

2

 .
It is clear that we can write v2 = 2v1. So, whenever we get a linear combination of v1 and v2 we

have av1 + bv2 = 1v1 + 2bv1 = (1 + 2b)v1. So, the span of v1 and the span of v1 and v2 is the
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same:

span{v1,v2} = span{v1}.
This concept of redundance among vectors, or lack of it, is formalized in the notion of linear of

linear independence.

Definition 3.9. Let v1, . . . ,vm be vectors in Rn. They are said to linearly independent if the

equation

x1v1 + · · ·+ xmvm = 0,

admits only the trivial solution x1 = . . . = xm = 0. If there is a nontrivial solution (i.e. with at

least one of the xi nonzero) to the previous equation, then the set of vectors is said to be linearly

dependent.

In the example above, the vectors v1 and v2 are linearly dependent. In fact, it can be seen that

2v1 − v2 = 0, meaning that there exists a nontrivial solution to a linear combination of v1 and v2,

where x1 = 2 and x2 = −1. Being linearly dependent, their span can be reduced to the span of

just (either) one of them.

Our question now is how to check whether certain vectors are linearly dependent or independent.

Let us show the idea through an example.

Example 3.10. Consider the three vectors v1 =

1

0

1

, v2 =

0

2

0

, and v3 =

3

6

3

. We would like

to understand whether these vectors are linearly independent or not. In other words, we should

verify whether there exist coefficients x1, x2 and x3 (not all of them zero) such that

x1v1 + x2 + v2 + x3v3 = 0.

In other words, our problem has become the same as finding nontrivial solutions of a linear system.

We can see that taking x1 = 3, x2 = 3 and x3 = −1 we solve the equation above, showing that

there are nonzero coefficients such that a linear combination of the v1, v2 and v3 is zero. This

means that the vectors are linearly dependent.

There are some very useful criteria for checking whether sets of vectors are linearly dependent

or not. Here is a result that immediately tell us that some vectors are linearly dependent.

Proposition 3.11. Let {v1, . . . , vp} be a set of vectors in Rn. If either of the two conditions is

satisfied, then the set is linearly dependent:

• One of the vectors is the zero vector 0;

• The number of vectors p is larger than the dimension n of the space Rn.

Proof. Suppose that the first condition holds, and that one of the vectors is zero. Without loss of

generality, suppose that this vector is v1 = 0. Then, choosing x1 = 1, and all the x2, . . . , xp to be

zero we find a nontrivial linear combination of the vectors v1, . . . ,vp that gives zero. The vectors

are therefore linearly dependent.

Consider now the second case, i.e. suppose that p > n. Then, the equation

x1v1 + · · ·+ xpvp = 0,

corresponds to a system of p equations in n variables. So, the nunmber of variables is larger than

the number of equations, meaning that there will be free variables. This implies that there exists

a nontrivial solution, meaning that the vectors are linearly dependent. �
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We also have the following.

Theorem 3.12. A set S = {v1, . . . ,vp} of vectors in Rn is linearly dependent if and only if at

least one vector is a linear combination of the other vectors.

Proof. Suppose that the set S is linearly dependent, and assume that v1 6= 0 (observe that if v1 = 0

then it is clearly a linear combination of the other vectors). This means that there exist coefficients

(not all trivial) x1, . . . , xp such that

x1v1 + · · ·+ xpvp = 0.

Since the x coefficients are not all trivial, it means that we can find one of them (say x1 for simplicity

and clarity) which is not zero. This means that

v1 = −x2
x1

v2 − · · · −
xp
x1

vp.

This is the definition of v1 being a linear combination of the other vectors, and we have proved

that if S is linearly dependent, then one of the vectors can be written as linear combination of the

other vectors.

Let us do the opposite implication. Suppose that we can write one of the vectors (let us say v1

again for simplicity and clarity) as linear combination of the other vectors. If v1 = 0 then we are

done from the Proposition above. So, take v1 6= 0. This means that we have some equation of type

v1 = x2v2 + · · ·+ xpvp,

where the x coefficients are not all trivial. Then we have a nontrivial linear combination

v1 − x2v2 − · · · − xpvp = 0.

This completes the proof. �

3.4. Linear Maps. Linear maps (or linear transformations) are functions T : Rn −→ Rm satisfying

the following property:

T (αx + βy) = αT (x) + βT (y),

for every choice of vectors x and y in Rn and any choice of numbers α and β.

Equivalently, when checking whether a map T is linear or not, we can verify the two conditions

• T (αx) = αT (x)

• T (x + y) = T (x) + T (y).

Example 3.13. The function f(x) = 5x is a linear map f : R −→ R. On the contrary, the function

f(x) = sin(x) is not linear, since sin(x+ y) 6= sin(x) + sin(y).

The following example shows the class of linear maps whose study is one of the main interests

in linear algebra.

Example 3.14. Any n×m matrix A gives rise to a linear map Rm −→ Rn. The map is obtained

by using the matrix-vector product rule. For example, consider the 3× 2 matrix

A =

 2 1

0 2

−7 0

 .
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Then, whenever we get a vector in R2, which is an object of type x =

[
x1
x2

]
, we can perform the

matrix-vector multiplication to obtain:

Ax =

2x1 + x2
2x2
−7x1

 ,
which gives another vector. In other words, we start with a vector in R2, and we get a vector in

R3. This is a map R2 −→ R3. We still need to understand whether this is linear or not. Consider

a scalar multiple of x, say αx =

[
αx1
αx2

]
. Then we get

A(αx) =

2αx1 + αx2
2αx2
−7αx1

 = α

2x1 + x2
2x2
−7x1

 = αA(x).

The first property is satisfied. To verify the second, consider now x as before, and also take

y =

[
y1
y2

]
. We have

A(x + y) =

2(x1 + y1) + x2 + y2
2(x2 + y2)

−7(x1 + y1)

 =

2x1 + x2
2x2
−7x1

+

2y1 + y2
2y2
−7y1

 = A(x) +A(y).

So, starting from a matrix, we obtain a linear map automatically. We will show, shortly, that all

linear maps Rn −→ Rm arise in this way.

Example 3.15. A very important class of linear maps, whose applications are found throughout

functional analysis and numerical analysis (although in the infinite dimensional case!), is the class

of projections. Roughly speaking, these maps take general vectors and return the components of

the vectors that lie in some chosen subspace. For instance, consider the three dimensional space

R3, and say that we want to project vectors from R3 onto the plane R2 determined by the x and y

coordinates (i.e. the first two coordinates). This map, which we call P3 takes v =

xy
z

 and gives

back the vector P3v =

xy
0

, where the third component has been removed! This linear map can

be written in the form of a matrix multiplying the input vectors in a very simple way. This is

P3 =

1 0 0

0 1 0

0 0 0

 .
A direct inspection (left as an exercise to the reader!) shows that matrix-vector multiplication of

the previous matrix and v =

xy
z

 gives exactly

xy
0

 as claimed.

A fundamental property of linear maps is the following.
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Proposition 3.16. Let T : Rn −→ Rm denote a linear map. Then, we have

T (0) = 0.

Proof. We have

T (0) = T (x− x) = T (x)− T (x) = 0,

for any choice of x.

Alternatively, another proof is obtained by considering

T (0) = T (0 · x) = 0 · T (x) = 0,

again for any choice of x. �

The matrix of a linear map. First observe that any vector in Rn can be written as a linear

combination of the vectors e1, . . . , en defined by

e1 =


1

0
...

0

 , · · · , en =


0
...

0

1


where ei consists of zeroes everywhere, but at the ith row, where there is 1. It is also simple to see

that the way of writing any vector as a linear combination of such vectors is unique. We will later

see that this is an instance of the notion of basis of a vector space.

Proposition 3.17. Any linear map T : Rn −→ Rm is the linear map associated to a unique matrix

A. In other whords

T (x) = Ax.

We show the result through an example. The generalization of it being straightforward.

Example 3.18. Consider the linear map T (

[
x1
x2

]
) =

[
3x1 + x2

2x2

]
. A direct verification shows that

this is indeed a linear map. Since we can decompose the vector

[
x1
x2

]
into the sum of the two vectors

e1 and e2 multiplied by x1 and x2, respectively, we can obtain the value of T on

[
x1
x2

]
by looking

at the value of T on e1 and e2. We have that T (e1) = 3e1, and T (e2) = e1 + 2e2. Now, we can

construct a matrix A where we place the coefficients of e1 and e2 from the previous computation

in the columns. The first column being T (e1), and the second column corresponding to T (e2). The

first column will have only a 3 on top, because T (e1) does not have a e2 component. The second

column will have 1 on top (since e1 appears in T (e2) without coefficients multiplying it), and a 2

corresponding to the e2 term in T (e2). We get

A =

[
3 1

0 2

]
.

A direct verification shows that A ·
[
x1
x2

]
gives the same output as T .
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V1

V3

V2V4

•

• •

•

Figure 1. Loop in a circuit to which Krichhoff’s second Law applies

3.5. Application to electrical circuits. Consider an electrical circuit where electricity is flowing

(i.e. the electrons are moving), and suppose that a resistor (such as a light bulb) is part of the

circuit. Due to the presence of something that uses the electricity, there is a drop in the voltage

(unit of meaasure V for Volts). A battery provides voltage so that the current keeps flowing. The

resistance of the resistor is measured in Ohms, whose unit symbol is Ω, and the current is measured

in Ampéres, denoted by A. At a node, i.e. a junction of the circuit of multiple wires, the currents

of each wire take a sign indicating whether the flow is incoming (+), or outgoing (−). The voltage

drop due to a light bulb is given by

R = V I,(2)

where R is the resistance, V the voltage and I the current.

The first Kirchhoff’s Law states that

• At each node, there algebraic sum (with signs) of the currents needs to be zero. In other

words, wathever comes in a node, must also go out.

The second Kirchhoff’s Law states that

• The directed sum of the potential differences (voltages) around any closed loop is zero. Here

the sources have plus sign if the current agrees with the orientation of the source, and they

are negative otherwise. See Figure 1.

Consider now a circuit as in Figure 2.

The meaning of the circuit is as follows. Each loop has a current of I1, I2 or I3, and the direction

is assumed to be counterclockwise in all loops. There are three Voltage generators denoted by a

voltage V , where the top voltage is taken with + because the battery has the same orientation

of the current, while in the other two cases we have the batteries in the opposite direction. The

segments have resistances given by some Ω. In this circuit, the currents I1, I2 and I3 are not known,

and we want to use the Kirchhoff’s second law to calculate them.

In the first loop (top), we have the current I1 going through three resistors, corresponding to a

drop of

4I1 + 4I1 + 3I1 = 11I1.

However, this is not all that needs to be considered. In fact, the lower loop shares a wire with the

first loop. Therefore, we need to consider the voltage corresponding to it and add/subctract it to

11I1. The current in the second loop (middle) flows in the opposite direction than the one in the

first loop, on the segment that they share. This means that we need to subtract 3I2 from 11I1. For
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−20V

30V

4Ω4Ω

1Ω1Ω

1Ω1Ω

3Ω

1Ω−5V

•

• •

•

•

• •

•

•

• •

•

I1

I2

I3

Figure 2. Circuit having three loops

the first loop, we also have a generator of 30V . Therefore, Kirchhoff’s law gives us an equality

11I1 − 3I2 = 30.

Similar considerations for the voltages in the second loop give

−3I1 + 6I2 − I3 = 5,

and for the third one

−I2 + 3I3 = −25.

We can now obtain a system of three equations whose solution gives the three unknown currents.
11I1 − 3I2 = 30

−3I1 + 6I2 − I3 = 5

−I2 + 3I3 = −25.

Solving this system gives a solution of I1 = 3A, I2 = 1A and I3 = −8A.

4. Matrix Algebra

In this section we focus on the set of all matrices over R (or C) with a fixed size, and consider

several algebraic operations on this set. Our focus will be on real numbers, as before. We will denote

the set of m×n matrices with entries in R with the symbol MR(m,n), and a similar notation holds

when the entries are in C.

There are two basic operations of matrices that directly generalize scalar multiplication and sum

of vectors.

Definition 4.1. Let r be a number, and let A and B be m×n matrices (i.e. elements of MR(m,n)).

Then, we define the new matrix r · A by multiplying all the entries of A by the number r, and we

define the matrix A+B by summing all the entries of A and B in their respective positions.

Let us now see the definition with an example.
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Example 4.2. Let r = 3, A =

[
1 0 7

−3 2 −1

]
and B =

[
2 −3 1

−7 2 −1

]
. Observe that A and B are

2× 3 matrices. We have

rA = 3A = A =

[
3 0 21

−9 6 −3

]
and

A+B =

[
1 0 7

−3 2 −1

]
+

[
2 −3 1

−7 2 −1

]
=

[
3 −3 8

−10 4 −2

]
.

The following result is easy to prove dorectly from the definitions, and it is left to the reader as

an exercise.

Proposition 4.3. Let A,B,C be m × n matrices, and let r, s be numbers. Also, denote by 0 the

m× n matrix consisting of all zero entries. Then, the following equalities hold:

• A+B = B +A;

• (A+B) + C = A+ (B + C);

• A+ 0 = A;

• r(A+B) = rA+ rB;

• (r + s)A = rA+ sA;

• r(sA) = (rs)A.

4.1. Matrix multiplication. We consider now an extremely important operation of matrices.

Namely, we introduce the multiplication of two matrices. The reason for introducing this operation

is that we want to represent the composition of linear maps in their matrix form. We know that

whenever we have a linear map, this can be written as a matrix. Now, we can compose linear

maps (they are functions!). Our question is how do we describe the matrix corresponding to the

composition of linear maps?

The answer is the product of matrices. We will derive the matrix of a composition, and we will

define the product to be exactly this matrix.

Let T1 and T2 be two linear maps. Assume that T1 : Rn −→ Rm. So, T1 takes as input a vector

of n entries, and returns a vector of m entries. We know that the matrix for T1 is an m×n matrix

A1. Same thing with T2. If T1 : Rm −→ Rk, then its corresponding matrix A2 is a ×k ×m matrix.

Observe that we can perform the composition of linear maps T2 ◦ T1 (why?).

We want to obtain the matrix for T2 ◦ T1 from A1 and A2.

Example 4.4. We will follow the procedure to obtain the maatrix for T2 ◦ T1 in the case of three

dimensional vectors, for simplicity. The general case is exactly the same, but with more indices.

Let x =

x1x2
x3

 be 3-dimensional vector. Let A1 be the matrix associated with the linear map T1,

and let A2 be the matrix associated with T2. Let us now compute T2(T1(x)) by multiplying A1 and

x, and then multiplying the result by A2. For A1 · x, we have the equality

A1 · x = x1c1 + x2c2 + x3c3,

where c1, c2 and c3 are the columns of A1 (the columns can be seen as vectors!). We leave it to

the reader to verify the previous equality. Now, when we apply A2 on A1 · x, due to the linearity

of matrix-vector multiplication (the matrix represents a linear map!), we find that

A2 · (A1 · x) = x1A2(c1) + x2A2(c2) + x3A2(c3).



LINEAR ALGEBRA 21

But this means that the matrix representing A2 · (A1 · x), which is the matrix representing T2 ◦ T1,
is the matrix having for columns the vectors A2(c1), A2(c2) and A2(c3).

We havae therefore found the way to write the matrix product. A2 · A1 is defined to be the

matrix with columns A2(c1), A2(c2) and A2(c3).

Example 4.5. Let A =

[
2 3

1 −5

]
be a 2 × 2 matrix, and let B =

[
4 3 6

1 −2 3

]
be a 2 × 3 matrix.

We want to compute the product A ·B. From the definition found above, in Example 4.4 we have

to multiply the left matrix, A, with the columns of the right matrix, B. Then, we have to put the

resulting columns in a matrix. So, we have

A ·
[
4

1

]
=

[
11

−1

]
,

A ·
[

3

−2

]
=

[
0

13

]
,

and

A ·
[
6

3

]
=

[
21

−9

]
.

Putting all the columns together in a matrix, we have

A ·B =

[
11 0 21

−1 13 −9

]
.

We call the matrix having ones only on the diagonal and zero everywhere else 1n. In other words,

1n =

1 · · · 0
...

...
...

0 · · · 1

 . For n = 3, 13 takes the form 13 =

1 0 0

0 1 0

0 0 1

 .
Theorem 4.6. Let A be an m×n matrix, and let B and C have sizes for which the products below

all make sense. We have

• A(BC) = (AB)C (associative law).

• A(B + C) = AB +AC (left distributive law).

• (A+B)C = AC +BC (right distributive law).

• r(AB) = (rA)B = A(rB) for any number r.

• 1mA = A1n = A.

Remark 4.7. Observe that the commutative law for matrices does not hold in general. Indeed, it

is easy to find examples for which AB 6= BA.

4.2. Transpose. Given an m × n matrix A, we define the transpose of A, and indicate it by AT

as the n×m matrix whose rows and columns are swapped.

Example 4.8. Let A =

0 1

2 −1

3 −2

, then AT =

[
0 2 3

1 −1 −2

]
.

So, the first row of AT is the first column of A and so on.

Theorem 4.9. If A and B are matrices for which the products and sums below make sense, then

we have the equalities

• (AT )T = A.
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• (A+B)T = AT +BT .

• (rA)T = rAT for any number r.

• (AB)T = BTAT .

4.3. Inverse of a Matrix. We now consider the problem of finding a multiplicative inverse to

matrices. Unlike numbers, matrices do not always have an inverse. We would like to understand

when such an inverse exists, how to compute it algorithmically, and what applications inverses can

have.

First of all, we have a definition.

Definition 4.10. We say that an n× n matrix A is invertible if there exists a matrix C such that

AC = CA = 1n.

In this situation, we say that C is an inverse of A. We also sat that an invertible matrix is

nonsingular, while a matrix that does not have an inverse is said to be singular.

Remark 4.11. It turns out that if A has an inverse C, this is uniquely determined. So, C is the

only inverse of A. We denote this inverse matrix by A−1.

A relatively obvious application of invertible matrices is the following.

Theorem 4.12. Let A be an invertible matrix. Then, the equation

Ax = b,

has a unique solution for all b, and it is given by x = A−1b.

Proof. By the definition of A−1, we have that

A(A−1b) = (AA−1)b = 1nb = b,

therefore showing that x = A−1b is a solution. To show that this is the unique solution, consider

a vector u that solves the equation. Then it holds

Au = b.

Multiplying both sides by A−1, we get u = A−1b, showing that u is the solution x given before. �

Now, we would like to understand how to find inverses. For 2× 2 matrices, this is not a difficult

problem. In fact, we have the following result.

Theorem 4.13. Let A =

[
a b

c d

]
be a 2×2 matrix. Then, A is invertible if and only if ad−bc 6= 0,

in which case

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Example 4.14. We can use these results to quickly solve linear systems. For instance, consider

the system {
3x1 + 4x2 = 3

5x1 + 6x2 = 7.

Then, the inverse of the matrix A =

[
3 4

5 6

]
is A−1 =

[
−3 2

5/2 −3/2

]
, and the solution of the system

is given by

x = A−1b =

[
−3 2

5/2 −3/2

] [
3

7

]
=

[
5

−3

]
.
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If we can decompose a matrix into a product, and we know the inverses of the components, then

we can compute the inverse of the product using the following result.

Theorem 4.15. The following results hold:

• (A−1)−1 = A.

• (AB)−1 = B−1A−1.

• (AT )−1 = (A−1)T .

An elementary matrix is a matrix that is obtained by performing a single elementary row oper-

ation on the identity matrix 1n.

Example 4.16. The following matrices are examples of elementary matrices:

A1 =

 1 0 0

0 1 0

−4 0 1

 , A2 =

0 1 0

1 0 0

0 0 1

 , A3 =

1 0 0

0 1 0

0 0 5

 .
In fact, A1 is obtained by summing −4 times the first row to the last row. A2 is obtained by

swapping the first row and the second row. A3 is obtained by multiplying the last row by 5. These

are all elementary row operations.

Let us now consider another matrix (not elementary) given by

A =

3 −1 0

1 −1 2

3 0 −1

 .
Computing the product A1 ·A, we see that this is the matrix

A1 ·A =

 3 −1 0

1 −1 2

3− 12 0 + 4 −1− 0

 .
In other words, multiplying A by A1 gave us a new matrix which is obtained from A by adding −4

times the first row of A. So, we have performed an elementary operation by multiplying by A1!

Elementary row operations have some very useful properties:

• If A is an m × n matrix, and E is an m ×m elementary operation, the product EA gives

the matrix obtain from A by applying the elementary operation needed to obtain E from

1m.

• Any elementary row operation E is invertible, and the inverse is the elementary matrix

needed to bring E to the identity matrix.

Example 4.17. We want to find the inverse matrix to E =

 1 0 0

0 1 0

−4 0 1

. To obtain E, we have

to perform the operation of summing −4 times the first row of the identity matrix 13 to the last

row. To undo this operation, we need to sum 4 time the first row of the identity matrix 13 to the

last row. So,

E−1 =

 1 0 0

0 1 0

+4 0 1


This is a very useful characterization of invertible matrices.
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Theorem 4.18. An n×n matrix A is invertible if and only if is row equivalent to the identity matrix

1n. Moreover, any sequence of elementary operations that reduces A to 1n will also transform 1n
into A−1.

Proof. If A is invertible, then from the fact that Ax = b has a unique solution for every choice of b,

it means that A has a pivot in every row. Since the matrix A is a square matrix, pivots have to lie

along the diagonal. So, the reduced echelon form of A is 1n. This means that A is row equivalent

to 1n.

Conversely, if A is row equivalent to 1n, we can write all the elementary row performed to obtain

an echelon form of A as elementary row operations E1, . . . , Ek. Then, it follows that

(Ek · · ·E1)A = 1n,

which means that Ek · · ·E1 is an inverse (from the left) to A. But since Ek · · ·E1 is invertible, we

also have that (show it!)

A(Ek · · ·E1) = 1n,

which means that A is invertible.

Since A−1 = Ek · · ·E1, we have that

A−1 = Ek · · ·E11n,

which means that A−1 is obtained from the identity matrix by applying the same k elementary

operations that reduced A to 1n. �

We can then obtain an algorithm for finding A−1:

• Take the matrix A, and define the augmented matrix A+ = [A 1n], obtained by placing the

matrix 1n close to A.

• Row reduce A+.

• If A is invertible, we will obtain a new matrix of the form A− = [1n A−1]. Otherwise, A is

not invertible.

Definition 4.19. A one-to-one function f : X −→ Y , also called bijective, is a function such that

the two following conditions are satisfied:

• There are no pairs of elements x1 and x2 in X which are different from each other, and

such that f(x1) = f(x2).

• Whenever we choose some y in Y , this is the image of some x in X. In other words, for

any y in Y , we can find and x in X such that f(x) = y.

We have the following characterization of invertible matrices.

Theorem 4.20. Let A be an n× n matrix. Then, the following statements are equivalent:

• A is invertible.

• A is row equivalent to 1n.

• A has n pivot positions.

• The equation Ax = 0 has only the trivial solution.

• The columns of A are linearly independent.

• The linear map T (x) = A · x is one-to-one (bijective).

• The equation Ax = b has exactly one solution for all choices of b.

• AT is invertible.



LINEAR ALGEBRA 25

4.3.1. Partitioned Matrices. A matrix A is said to be partitioned, if we have a subdivision of it into

sub-matrices. This is usually indicated by some horizontal and vertical line. Matrices of this type

look like

A =

[
a11 a12 a13 a14
a21 a22 a23 a24

]
.

A partition matrix can be seen as a matrix whose entries are matrices themselves. For instance,

A can be seen as obtained by putting together three matrices:

[
a11
a21

]
,

[
a12 a13
a22 a23

]
,

[
a14
a24

]
.

In general, we can list the entries of a partitioned matrix by indicating the sub-matrices that

constitute the partitioned matrix. For instance, we can write:

B =

[
A11 A12

A21 A22

]
,

for a partitioned matrix B where A11, A12, A21 and A22 are matrices themselves.

Multiplication of partitioned matrices can be performed using the same rules as matrix multipli-

cation for usual matrices, row-column rule seen before, but using the product of matrices in each

term instead of the usual product between numbers. Of course, the partitions need to agree in

order to be able to do this.

Example 4.21. Let A =

 2 −3 1 0 −4

1 5 −2 3 −1

0 −4 −2 7 −1

 and A =


6 4

−2 1

−3 7

−1 3

5 2

. We can write A =

[
A11 A12

A21 A22

]
, and B =

[
B1

B2

]
. Then, to compute A · B we can perform the product of matrices

A and B thinking of the submatrices Aij and Bk as numbers, and using the matrix products for

them as well. We have

A ·B =

[
A11B1 +A12B2

A21B1 +A22B2

]
where now we have to perform the matrix products (the usual ones) also for A11B1 and so on. This

gives us our product matrix.

Let us now consider the problem of finding the inverse of partitioned matrices. In particular, we

are interested in matrices that can be partitioned in the following form

A =

[
A11 A12

0 A22

]
,

where A11 is a p × p matrix, A22 is q × q, 0 is the zero matrix, and A12 has size depending on p

and q: it is p× q. The equation for finding an inverse to A is

AB = 1p+q,

where B is some general matrix. We therefore have[
A11 A12

0 A22

] [
B11 B12

B21 B22

]
=

[
1p 0
0 1 + q

]
.

We call such a matrix block upper triangular.
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Assume now that A is invertible. Using our previous rules for multiplying partitioned matrices,

we find the equations

A11B11 +A12B21 = 1p(3)

A11B12 +A12B22 = 0(4)

A22B21 = 0(5)

A22B22 = 1q(6)

Applying the same reasoingin as in Theorem 4.18, we find right away from Equation (6) that A22

is invertible, with inverse B22 = A−122 . Then, this implies that B21 = 0, since we can left-multiply

both sides of Equation (6). Therefore, Equation (3) becomes A11B11 = 1p. This means that A11 is

invertible. We can multiply Equation (4) on the left by A−111 , and recalling that B22 = A−122 , we get

B12 = −A−111 A12A
−1
22 . We have found therefore the inverse of the block matrix A as

A−1 =

[
A−111 −A−111 A12A

−1
22

0 A−122

]
.

So, this is again block upper triangular.

4.4. LU factorization. The diagonal from top-left to bottom-right will be called the main diagonal

of the matrix. The diagonal from top-right to bottom left will be called the main anti-diagonal. If

a matrix has only zeros above the main diagonal, then it is said to be lower triangular. If it has all

zeros below the main diagonal it is called upper triangular.

An LU factorization of a matrix A, is a factorization of A as a product A = LU where L is

lower triangular, and U is in echelon form, hence it is upper triangular. When we want to obtain a

solution of the matrix equation Ax = b, and A = LU has an LU factorization, then we can solve

the equation in two steps. Observe that in order to have LUx = b, we need to have Ly = b, where

y = Ux. So, we can solve the system {
Ux = y

Ly = b

and a solution of the pair of equations is a solution of the original Ax = b.

The reason why this is usefeful is the following. Suppose we have several equations of type

Ax = b1, . . . , Ax = bk with a very large k. Then, we can solve the first equation using a row

reduction argument, and we can obtain an LU factorization of A using the row reduction process.

Now, instead of recomputing the row reduction for every equation (observe that we should do it

each time we change the augmented matrix, so whenever we change b), we use the argument above

to solve the other equations directly through the LU factorization. This speeds up the process

significantly.

We show how to construct such a matrix with an algorithm. This algorithm is not always appli-

cable, and sometimes one needs to use permutation matrices as well (PLU and LUP factorizations).

We will consider the cases where the factorization exists without permutations. We have a simple

preliminary result, first. This result will be used in the algorithm.

Proposition 4.22. Let A and B be two lower triangular matrices. Then AB is lower traingular

as well. Moreover, If A is invertible, then also A−1 is lower triangular. Similar statements hold

for upper triangular matrices.

Suppose that A can be reduced to the echelon form U only using row replacements that add a

multiple of one row to another row below it. Then we can perform the following procedure:
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• Find elementary matrices E1, . . . , Ep such that

(Ep · · ·E1)A = U.

Here the matrices Ei are all lower triangular because we just need to perform row re-

placements to rows below. Hence, the product E1, . . . , Ep is lower triangular (by Proposi-

tion 4.22)

• Then, we can write A = (Ep · · ·E1)
−1U . Using Proposition 4.22, we know that (Ep · · ·E1)

−1

is lower triangular, and U is upper triangular because it is an echelon form.

4.5. Subspaces of Rn. A subspace of Rn is a set of vectors that behaves like Rn, in the sense that

we can add, subtract, multiply by scalars, in the same way as we do in Rn.

We start by giving a definition.

Definition 4.23. A subspace of Rn is a nonempty set V of Rn such that the following two properties

are satisfied:

• For any pair of vectors v,w in V , v + w is in V as well.

• For any vector v in V and any scalar α, the vector αv is in V as well.

Remark 4.24. Observe that any subspace must contain the zero vector. In fact, since V is

nonempty, there exists a vector v in V . But then 0 = 0 · v is in V for the second property. Or

similarly, 0 = v − v is in V for the first (and second!) property.

Remark 4.25. There are two subspaces of a vector space that are always present. The first one

is the zero subspac, consisting of only zero: {0}. The other one is Rn itself. These are called the

trivial subspaces.

There are two very important subspaces of Rn that are associated to any matrix (and therefore

to any linear map as well!).

Definition 4.26. Let A be matrix. We define the range of A (also called the column subspace)

as the span of the column vectors of A, or equivalently as the span of A(e1), . . . , A(ek) where k is

the size of the target Rk of the linear map associated to A. This space is indicated as Col(A), or

Range(A).

Definition 4.27. The kernel of a matrix A (and threfore of the linear map associated to A) is

defined as the subspace of vectors x such that Ax = 0. It will be indicated as Ker(A).

We leave the proof of the next proposition to the reader.

Proposition 4.28. The kernel of a matrix A is a subspace.

When describing a subspace, it turns out that we do not need to give a description of all of

the vectors, but we can refer to only few vectors that generate the whole subspace as their linear

span. However, we would like to have a minimal number of such vectors. This motivation drives

the following definition.

Definition 4.29. Let V be a subspace of Rn. A basis for V is spanning set of V consisting of

linearly independent vectors.

In fact, we have already seen a very important example of basis. Take the trivial subspace

V = Rn of Rn. Then, the canonical vectors e1, . . . , en are a basis for V .
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Example 4.30. Consider the matrix

A =

−3 6 −1 1 −7

1 −2 2 3 −1

2 −4 5 8 −4

 .
We want to find a basis for the kernel of A. We need to solve the equation Ax = 0 and write a

solution in parametric form.

We row reduce the matrix to obtain an echelon form. We find the echelon form

B =

1 −2 0 −1 3

0 0 1 2 −2

0 0 0 0 0

 .
This gives us a solution of type x1 = 2x2 + x4 − 3x5, x3 = −2x4 + 2x5 where x2, x4 and x5 are free

variables. So, the general vector that solves the equation has the form
2x2 + x4 − 3x5

x2
−2x4 + 2x5

x4
x5

 ,
which means that we can write any solution as x = x2u + x4v + x5w, where

u =


2

1

0

0

0

 , v =


1

0

−2

1

0

 , w =


−3

0

2

0

1

 .
The vectors u.v,w are linearly independent (why?) and therefore they are a basis for the kernel

of A.

We now introduce and discuss the notion of coordinate system for a subspace. First, observe that

if B is a basis for the subspace V , then any vector can be written uniquely as a linear combination

of vectors of B. In fact, by definition of the fact that B is a basis, it spans V , meaning that any

vector in V is a linear combination of vectors in B. Now, we want to show that this way of writing

the elements of B is unique. Let v1, . . . , vp be the vectors of B. Suppose that the vector can be

written as a linear combination of 1, . . . , p in using the coefficients a1, . . . , ap and b1, . . . , bp. In other

words, we have that

x = a1v1 + · · ·+ apvp

x = b1v1 + · · ·+ bpvp.

Subtracting the two equations we obtain

0 = (a1 − b1)v1 + · · ·+ (ap − bp)vp.

From the definition of basis, we know that v1, . . . ,vp are linearly independent. But the only

way that a linear combination of linearly independent vectors could give the zero vector is if the

coefficients are all zero. Therefore, we have found that a1 = b1, . . . ap = bp. This shows that there

is only one way to write any vector in V is a linear combination of vectors in B.



LINEAR ALGEBRA 29

Given a vector v, we find unique coefficients a1, . . . , ap needed to write v as a linear combination

of vectors in B. We call these coefficients the coordinates of x with respect to B, or just the

B-coordinates of x. In such a situation we write

[x]B =

a1...
ap

 .
It turns out that the number of vectors present in a basis for a subspace V depends only on V ,

and it is the same between any pair of bases. The following definition is therefore well posed.

Definition 4.31. The dimension of a nonzero subspace V , denoted by dim V , is the number of

vectors in any basis for V . We also define the dimension of the zero subspace to be 0.

We define two important dimensions. Namely, the dimensions of the kernel and the range of a

matrix.

Definition 4.32. Let A be a matrix. The rank of A, written rank(A) or also ρ(A), is the dimension

of the range of A. In other words, we have rank(A) = dim Range(A). The nullity of A, written

N(A), is the dimension of its kernel. In other words, N(A) = dim ker(A).

We are now in the position to state the following theorem, proof of which will be given later in

the course.

Theorem 4.33. Let A be a matrix with n columns. Then rank(A) + N(A) = n.

Theorem 4.34. The following statements are equivalent.

• The columns of A form a basis or Rn.

• Range(A) = Rn.

• rank(A) = n.

• N(A) = 0.

• ker(A) = {0}.

Proof. The proof is simple, and it is left to the reader as an exercise. �

5. Determinants

Determinants have two important types of applications. Firstly, we will see that an n×n matrix

is invertible if and only if its determinant is nonzero. Therefore, determinants characterize whether

you can invert or not a matrix. Secondly, determinants have a geometric notion attached to them,

where they tell you how much the areas/volumes are modified by linear maps. We first need to

define determinants, though.

We have seen before that a 2 × 2 matrix A = [aij ] is invertible if and only if the quantity

detA = a11a22− a12a21 6= 0. We now want to extend this result to larger square matrices. Let us

look at a 3× 3 example, before giving the general rule.

Consider the 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
and assume that this is an invertible matrix.
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Let us multiply second and third rows by a11, if a11 6= 0, to obtain the row equivalent matrix a11 a12 a13
a11a21 a11a22 a11a23
a11a31 a11a32 a11a33


and subtracting multiples of the first row from the second and third rows we find the row equivalent

matrix a11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 a11a32 − a12a31 a11a33 − a13a31

 .
Since A is assumed to be invertible, then we have that in the last matrix either the (2, 2) entry is

nonzero, or the (3, 2) entry is nonzero (why?). Assume that the entry (2, 2) is nonzero. Otherwise

we can simply exchenge rows and and have again a matrix with (2, 2) entry that is nonzero. Now

we multiply the third row by a11a22 − a12a21, and subtract from it the second row multiplied by

a11a32 − a12a31. We get now a new matrix that is given bya11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 0 a11∆

 ,
where ∆ is given by the equation

∆ = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

The fact that A is invertible means that we necessarily have ∆ 6= 0, or otherwise the last row of

the matrix row equivalent to A would be zero, and this is clearly not an invertible matrix.

To interpret this value, ∆, in relation to detA for 2× 2 matrices, observe that we can write ∆ in

the following way:

∆ = a11det

[
a22 a23
a32 a33

]
− a12det

[
a21 a23
a31 a33

]
+ a13det

[
a21 a22
a31 a32

]
.

For n = 1 we can also set detA = a11, which is the only element in the matrix. With this definition

it is easy to see that if A is a 2× 2 matrix, detA = a11 det[a22]− a12 det[a21].

This motivates the following inductive definition of the determinant.

Definition 5.1. For any n ≥ 2, and any n × n matrix A, we define the determinant of A = [aij ]

in the following way:

detA = a11detA11 − a12detA12 + · · ·+ (−1)n+1a1nA1n =

n∑
j=1

(−1)j+1a1jA1j ,

where the matrix A1j is obtained from A by deleting the first row, and the j column. In other

words, to define the determinant at level n, we use the determinant at level n− 1.

Remark 5.2. Observe that the definition is well posed, because we have a starting point, i.e.

n = 1, and whenever we want to compute the determinant at higher orders, we can reduce it step

by step to a determinant of lower order until we reach n = 1 (or n = 2, 3 since we now have formulas

for them as well).

We now define the cofactors of a matrix A = [aij ]. The (i, j)-cofactor of A is the number Cij
obtained as Cij = (−1)i+j detAij , where Aij was defined above and it is the matrix obtained from

A by removing the ith-row and jth-column.
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Using the notion of cofactor, the definition of determinant can be rewritten as

detA = a11C11 + · · ·+A1nC1n.

In fact, it turns out that the determinant can be equivalently written using any other row rather

than the first one, or even columns instead of rows. We formalize this in the next theorem, proof

of which will not be given in this notes.

Theorem 5.3. Let A be an n× n matrix. Then we have

detA = ai1Ci1 + · · ·+ ainCin,(7)

detA = a1jC1j + · · ·+ anjCnj ,(8)

for any choice of i and any choice of j.

Remark 5.4. In other words, when computing the determinant we can use an expansion with

respect to any choice of row or column. This is useful to simplify computations.

We now consider the determinant of triangular matrices (upper or lower), and see that they are

simpler to compute than for other cases.

Theorem 5.5. Let A be an upper or lower triangular matrix. Then, the determinant of A is the

product of the entries along the main diagonal.

Proof. We assume that our matrix A is upper triangular, just to fix the procedure. A similar

reasoning will work for the case of a lower triangular matrix. Observe that the first column of

A consists of only zeros and a single possibly nonzero number in position (1, 1). So, a cofactor

expansion of detA along the first column consists of only a term:

detA = a11C11.

Now, C11 = detA11, so that we need to compute the determinant of the matrix A11 obtained from

A by deleting first row and first column. To compute this, we can again use the fact that below

the top left entry, which now is a22 we have only zeros, so that we can again perform a cofactor

expansion with respect to the first column to get detA = a22C
′
11, where C ′ is a cofactor for the

matrix A11, and the prime symbol is simply emphasizing that the matrix is not the original A.

Again, this gives us another determinant to compute. But we can iterate this procedure each time,

at each step computing the cofactor expansion with respect to the first column of the new matrix,

getting at each step a multiplication of akk, the term along the diagonal, times a new cofactor.

Once we get to k = n − 1 we find that there is only a term left, namely ann, which gives the full

determinant as detA = a11 · · · ann, compliting the proof. �

5.1. Properties of determinants.

Theorem 5.6. Let A be a square matrix. Then the following facts hold.

1. If a multiple of a row of A is added to any other row, then the matrix B obtained satisfies

detA = detB.

2. If B is obtained from A by interchanging two rows, then detA = −detB.

3. If B is obtained from A by multiplying a row by a number k, then k detA = detB.

Proof. We proceed by induction. This means that we show that the statements hold for some n

(e.g. n = 2), and then we show that each time the statements hold for some n = k, this implies

that it also holds for n = k + 1. Therefore, we can get it true for any n.
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For n = 2 it is a simple direct inspection which we leave to the reader as an exercise. Let us

now assume that the result holds for n = k for some k ≥ 2. We want to prove it now for the next

integer n = k + 1. So, assume that our matrix A has size n = k + 1.

Let us show 1. Since the matrix has more than two rows, there is a row of A that does not take

part in the elementary operation applied in 1. Let us say that this row is the row i. Using the

cofactor expansion in i we find that

detB = ai1(−1)i+1 detBin + · · ·+ ain(−1)i+n detBin.

The matrices Bik have been obtained from Aik by performing the same operation on Aik that

we performed on A, i.e. multiplying a row by a scalar and adding it to another row. So, we

can now apply the inductive hypothesis, since Aik are smaller matrices than A (one row and one

column less), and therefore they are of size k× k. Using the inductive hypothesis we get then that

detBik = detAik for all k = 1, . . . , n. This gives then that

detB = ai1(−1)i+1 detAin + · · ·+ ain(−1)i+n detAin = detA.

Let us now show 2. We proceed in the same way to expand the determinant of B with respect

to a row that did not take part in the elementary operation of 2. In this case, by the inductive

hypothesis, we find that detBik = −detAik, and therefore that

detB = −ai1(−1)i+1 detAin − · · · − ain(−1)i+n detAin = −detA.

To show 3, we proceed exactly in the same way, but this time we get multiplying factors of k for

each detBik, and this gives us detB = k detA. �

The previous results has an incredibly important application, which we now state and prove.

Namely, this is the fact that similarly to the 2× 2 case seen before, a square matrix has an inverse

if and only if its determinant is nonzero.

Theorem 5.7. Let A be a square matrix. Then A is invertible if and only if detA 6= 0.

Proof. We know that there exists a matrix U in echelon form that is obtained from A by elementary

operations. Then, U is a triangular matrix (by definition of echelon form, and since A is square).

From Theorem 5.6 we know that detA = (−1)r detU , where r is the number of row interchanges

(recall from the theorem that each interchange corresponds to changing sign of the determinant).

Then, detA 6= 0 if and only if detU 6= 0. From Theorem 5.5 we know that the determinant of U is

just the product of the entries in the diagonal. For a matrix U in echelon form, we also know that

being invertible is equivalent to having all nonzero pivots, which all lie in the diagonal since U is

square. It follows that U is invertible (has all nonzero pivots) if and only if detU 6= 0. Observing

that U is invertible if and only A is invertible now completes the proof, since we have also showed

that detA 6= 0 if and only if detU 6= 0. �

The following result is a simple application of the cofactor expansion of determinants with respect

to rows and columns. We leave it to the reader as an exercise.

Theorem 5.8. Let A be a square matrix. Then, detAT = detA.

Lastly, we state and prove another very important property of determinats.

Theorem 5.9. Let A and B be n× n matrices. Then, det(AB) = detAdetB.



LINEAR ALGEBRA 33

Proof. Suppose first that A is not invertible. Then, by Theorem 5.7 detA = 0, and det(AB) = 0,

since AB is not invertible as well, when A is not invertible. Therefore, the equality in the statement

of the proof holds true, since it would be 0 = 0.

Now, let us suppose that A is invertible, and therefore that its determinant is nonzero. From

Theorem 4.18 we know that A is row equivalent to 1n through a sequence of elementary moves

E1, . . . , Ek such that A = (Ek · · ·E1)1n = Ek · · ·E1. Recall that for an elementary operation E, the

determinant of E is either 1 or −1, depending on it being as in 1 or 2 of Theorem 5.6, respectively.

This means, applying Theorem 5.6 several times, that

det(AB) = det(Ek · · ·E1B)

= det(Ek) det(Ek−1 · · ·E1B)

...

= det(Ek) · · · det(E1) detB

= det(EkEk−1) · · · det(E1) detB

...

= det(Ek · · ·E1) detB

= detAdetB,

which completes the proof. �

5.2. Cramer’s rule. We already know that if a matrix A has nontrivial determinant, it is possible

to find an inverse to it. Now, we would like to find a way to obtain the inverse without the need

of algorithmic procedures as we have previously done. This result will be a consequence of the

following.

Theorem 5.10 (Cramer’s Rule). Let A be an invertible n × n matrix. For any b in Rn, the

unique solution Ax = b is given by

xi =
detAi(b)

detA
,

for all i = 1, . . . , n, where Ai(b) is the matrix obtain from A by replacing the ith column of A by b.

Proof. Denote by a1, . . . ,an the columns of A, and denote by e1, . . . , en the columns of the identity

matrix 1n. Suppose that Ax = b, so that we have a solution x to our matrix equation. Then,

using the definition of product multiplication we have

A · 1i(x) = A[e1 · · · x · · · en]

= [Ae1 · · · Ax · · ·Aen]

= [a1 · · · b · · ·an]

= Ai(b).

From the multiplicative property of determinants, i.e. Theorem 5.9, we have that

(detA)(det 1i(x)) = detAi(b).

By direct computation using a cofactor expansion along the ith row, we can see that det 1i(x) = xi.

We leave to check this fact to the reader as an exercise. This gives us the result, completing the

proof.

�
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Let us now define the adjugate matrix. Given an n × n matrix A, we define the adjugate of A,

denoted by adj A as the matrix having (i, j)-entry given by

Cji = (−1)j+i detAji,

where Cji is the cofactor of A at position (j, i), which we defined as (−1)j+i detAji.

Now we can derive a formula for the inverse of a matrix.

Theorem 5.11. Let A be an invertible n× n matrix. Then, the inverse of A is given by

A−1 =
1

detA
adj A.

Proof. By definition of inverse, this is a matrix such that AA−1 = 1n. Using the definition of

multiplication as product of a matrix by the columns of the second matrix, we need to find columns

x for A−1 such that Ax = ej for all columns j. Using Cramer’s rule, this means that the ith entry

of x is given by

xi =
detAi(ej)

detA
.

By performing a column expansion along column i of Ai(ej) we see that

detAi(ej) = (−1)i+j detAji = Cji.

This completes the proof. �

5.3. Areas, Volumes and Determinants. We show now the relation between determinants and

areas and volumes.

Theorem 5.12. Let A be a 2× 2 matrix. Then |detA| is the area of the parallelogram determined

by the columns of A. Similarly, let A be a 3 × 3 matrix. Then, |detA| is the volume of the

parallelepiped determined by the columns of A.

Proof. Let us consider the 2 × 2 case. If the matrix A is diagonal, then the statement is obvious,

since the parallelogram is in fact a rectangle, and the area is obviously the product of the two

diagonal entries. We want to show now that any 2× 2 matrix can be transformed into a diagonal

matrix through operations that do not change area and determinant. From Theorem 5.6 we know

that performing elementary operations, excluding the rescaling of a row, the absolute value of the

determinant is unchanged. Also, since detA = detAT , we know that the same holds for columns.

In addition, we know that we can obtain a diagonal matrix from A by performing these operations

on columns. It just remains to show that also the area of the parallelogram is unchanged when

performing such operations. Let a1 and a2 denote the columns fo A. We want to show that when

changing a2 to a2 + ka1 (i.e. when we sum a multiple of the first column to the secon column),

the area is unchanged. If a2 is proportional to a1, the area would be zero, since the parallelogram

would collapse to a segment. So, we can assume that a1 and a2 are not proportional, which implies

that a2 + ka1 is nonzero for any choice of k. Observe that a2 and a2 + ka1 have both the same

perpendicular distance from the line L containing 0 and a1, since they both lie on a line parallel

to L. Namely, the line L + a2, which is just a translation of L. Therefore, the parallelograms so

obtained have the same area, since the share the same basis, and they have the same height.

The case of 3 × 3 matrices is handled in a similar fashion. First, observe that the case when

A is diagonal is obviously true. Then, we want to show that we can reduce the general case to

the diagonal one. Once again, we need to show that we can add multiples of columns to any

other column without changing the volume. The volume of a parallelepiped is determined by the
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area of the base times the height. Using the same procedure done before, we can change the base

into a rectangle without changing the area of the base, hence without changing the volume of the

parallelepiped. Now we can perform a translation along a plane without changing the perpendicular

projection. This does not change the volume. We leave to the reader the exercise to fill the gaps

in this argument, following a reasoning similar to the first part. �

6. Vector Spaces

We now delve into the main topic of Linear Algebra: Vector Spaces. Most of what we have done

so far, has implicitly used properties of vector spaces without explicitly saying it. Vector spaces are

general objects that abstract the notion of Rn that we have considered so far. We give the general

definition below.

Definition 6.1. A vector space is a set V of elements called vectors endowed with an operation

+ which takes two vectors v and w, and returns a single vector v + w, and a multiplication by

scalars · which takes a number k and a vector v, and returns a vector k · v (also denoted by kv).

These operations satisfy the following defining axioms.

1. + is commutative: v + w = w + v.

2. + is associative: (v + w) + u = v + (w + u).

3. There exists a “zero vector” 0 such that 0 + v = v.

4. For any vector v, there exists a vector −v, such that v + (−v) = 0.

5. The scalar product distributes over +: k(v + w) = kv + kw.

6. The scalar product distributes over the sum of scalars: (k1 + k2)v = k1v + k2v.

7. Scalar product and product among numbers associate: k1(k2v) = (k1k2)v.

8. 1v = v.

We now give some examples of vector spaces.

Example 6.2. The spaces Rn that we have considered up to now are all vector spaces, for any

choice of n.

Example 6.3. Let V be the set of arrows in the plane or the three dimensional space. Addition here

is defined through the parallelogram rule that we have encountered before, and scalar multiplication

is obtained by rescaling the size of the arrow. The zero arrow is the zero vector, as one can easily

check. This set is a vector space.

Example 6.4. Consider the set S of sequences of real numbers indexed by the integers Z. These

are objects of type

{yk} = (· · · , y−2, y−1, y0, y1, y2, · · · ),

where each yi is a real number.

We define addition by componentwise addition. This means that given y = {yk} and z = {zk}
we set

y + z = {yk + zk} = (· · · , y−2 + z−2, y−1 + z−1, y0 + z0, y1 + z1, y2 + z2, · · · ).

Mnultiplication by scalars is obtained likewise by multiplying all entries of the sequence by the

scalar, c · {yk} = {cyk}. The zero vector here is the vector consisting of all zeros, 0 = {yk} with

yk = 0 for all k. The reader can verify that this is indeed a vector space.
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Example 6.5. Consider the set of polynomials of degree at most n, where n ≥ 0, and coefficients

in the real numbers. An element of this set ihas the general form

p(x) = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n,

where ai are all real numbers. Then, the sum of two polynomials is simply given by

p(x) + q(x) = (a0 + b0) + · · ·+ (an + bn)xn,

where p(x) = a0 +a1x+ · · ·+an−1x
n−1 +anx

n, and q(x) = b0 + b1x+ · · ·+ bn−1x
n−1 + bnx

n. Scalar

multiplication is given by

cp(x) = ca0 + ca1x+ · · ·+ can−1x
n−1 + canx

n.

Example 6.6. Let F (D) be the set of all real valued functions on some subset D of the real

numbers. The usual addition found in calculus, where f(x) + g(x) is componentwise addition, and

the multiplication by numbers kf(x), turns this set into a vector space. Here, clearly, the zero

vector is just the function f(x) = 0 for all x ∈ D.

Example 6.7. Consider the set of n × m matrices with real valued entries, Mn,m(R). The, the

componentwise addition and scalar multiplication that we have defined for matrices turns this

space into a vector space. The zero matrix here serves as the zero vector. More generally, linear

maps Rm −→ Rn are a vector space with addition and scalar multiplication defined componentwise,

and the correspondence that we have studied between matrices and linear maps gives a way of

translating one vector space into the other. We will see latern on that there is a very specific name

for this situation.

Proposition 6.8. Let V be a vector space. Then, the following facts hold.

• 0 · u = 0 for any u in V .

• k · 0 = 0, for any number k.

• −u = (−1) · u for any u in V .

Proof. For the first one, we have

0 · u = (0 + 0) · u = 0 · u + 0 · u.

Subtracting from both sides 0 · u gives 0 · u = 0.

The other two statements can be shown in a similar way, and this is left to the reader as an

exercise. �

6.1. Subspaces. Roughly speaking, a subspace of a vector space V is a subset that is itself a vector

space. For instance, if we consider Rn, we can consider only vectors of type

ab
0

, consisting of two

arbitrary numbers and always zero in the bottom entry. This is a subspace that greatly resembles

R2. We will later formalize this notion of “resembling”.

Definition 6.9. A subspace W of a vector space V is a subset of V that satisfies the following

properties.

• The zero vector 0 is in W .

• W is closed under addition, meaning that whenever v and w are in W , then also v + w is

in W .
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• W is closed under multiplication by scalars. This means that if k is any number and w is

a vector in W , then kw is in W as well.

Proposition 6.10. Let W be a subspace of the vector space V . Then W is a vector space itself.

Proof. Observe that since the operatrions of + and · are inherited from V , which is a vector space,

then they are commutative and associative and distribute over each other. Moreover, since 1·w = w

for any w in V , a fortiori this holds when w is chosen in W since W is a subset of V .

The only things that need to be verified are that + is an operation of W (meaning that is closed

under addition), that the scalar product maps into W , and that 0 is in W . These are exactly the

properties that W needs to verify in order to be called a subspace of V . �

Example 6.11. Given any vector space, there are automatically two subspaces which we will call

“trivial” subspaces. Namely, these are the zero subspace, {0} consisting of only the zero vector,

and the whole space itself, V .

Example 6.12. Consider the space of polynomials of degree n > 1, Pn. For any choice of 0 < m <

n, the space of polynomials of degree m, Pm, is a subspace of Pn which is not one of the trivial

ones trivial.

Example 6.13. In Rn, define W to be the subset consisting of vectors having arbitrary entries

everywhere except the bottom entry, which is 0. This is a subspace of Rn.

Given a set of vectors v1, . . . ,vk in V , we can take linear combinations of them exactly in the

same way we did for columns in Rn until now. We can therefore define the set consisting of all

possible linear combinations of vectors v1, . . . ,vk. We call this set the span of v1, . . . ,vk, and we

write span{v1, . . . ,vk}, as we did before for column vectors in Rn.

Proposition 6.14. The span of vectors v1, . . . ,vk in V is a subspace of V .

Proof. The proof is simple, and left to the reader as an exercise. We only observe that the zero

vector 0 is in span{v1, . . . ,vk} since we know that 0 · u = 0 for any vector u. �

Another important class of subspaces is the nullity of a matrix, which is the kernel of a linear

map. We have shown this fact. Another important subspace of Rn is the range of a linear map.

We will now generalize the notion of kernel and range of a linear map to the case of any vector

space V . To do so, we have to define linear maps between arbitrary vector spaces.

Definition 6.15. Let V and W be two vector spaces. A function T : V −→ W is said to be a

linear map if it satisfies the following two properties:

• T (u + v) = T (u) + T (v) for all vectors u,v in V .

• T (ku) = kT (u) for any u in V and any number k.

Example 6.16. Any matrix A gives rise to a linear map between vector spaces. We have considered

this particular situation several times before.

Example 6.17. Let V be the space of differentiable functions defined over the interval [0, 1]. Let

W be the space of functions defined over [0, 1]. Then, the differential operator d
dx from calculus is

a linear map V −→W !

In fact, whenever we have two functions f(x) and g(x) and we sum them, the differential of their

sum is simply d
dx(f(x) + g(x)) = d

dxf(x) + d
dxg(x). Similarly one has d

dx(kf(x)) = k d
dx(f(x)).
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Then, we can now define the notion of kernel of T for linear maps that deal with arbitrary vector

spaces.

Definition 6.18. The kernel of the linear map T : V −→W is the set of vectors u in V satisfying

the condition that T (u) = 0. We indicate it by the symbol kerT

Similarly, we can define the range of T .

Definition 6.19. Let T : V −→W be a linear map. Then, the range of T , also called the image of

T is the set of vectors w in W such that T (x) = w for some x in V . We indicate it by the symbol

ran T .

Definition 6.20. A linear map having zero kernel is said to be injective. A linear map having

range corresponding to the codomain is said to be surgective. If a linear map is both injective and

surjective is said to be an isomorphism.

Remark 6.21. Isomorphisms are just one-to-one linear maps!

The importance of isomorphisms is that they translate a vector space into another one precisely,

without missing anyting or removing anything. Basically, if two vector spaces are isomorphic (i.e.

there is an isomorphism between them), it means that they are “substantially” the same as long

as linear algebra is involved. We will see this fact in more detail shortly.

6.2. Linearly Independent Sets and Bases. Similarly to what we have done with Rn, which is

our prototype vector space, we will define linearly independent sets and bases.

Let {v1, . . . ,vk} be a set of vectors in V . Then, a linear combination of them is a vector of the

form

α1v1 + · · ·+ αkvk,

where α1, . . . , αk are numbers. We will denote the set of linear combinations of {v1, . . . ,vk} as

span{v1, . . . ,vk}.
We say that a set {v1, . . . ,vk} is linearly independent if the only trivial linear combination that

it has is obtained through the coefficients α1 = · · · = αk = 0. We say that {v1, . . . ,vk} is linearly

dependent if it is not linearly independent.

Theorem 6.22. If S = {v1, . . . ,vk} is a set of nonzero vectors, then it is linearly independent if

and only if one of the vectors can be written as linear combination of the others.

Proof. Suppose that one of the vectors is a linear combination of the others. We can assume that

v1 = α2v2 + · · · + αkvk, or otherwise we can renumber them. Then, we have a nontrivial linear

combination of type:

v1 − α2v2 − · · · − αkvk = 0.

Viceversa, assume that the vectors are not linearly independent. We can find a combination

α1v1 + · · ·+ αkvk = 0.

At least one of the αi needs to be nonzero, by definition of linear dependence. Then, we can write

vi = −α1

αi
v1 − · · · − −

αk
αi

vk.

�

Definition 6.23. Let V be a vector space. Then, we say that B = {v1, . . . ,vk} is a basis of V if

the two following conditions are satisfied.
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• B spans V , i.e. spanB = V .

• B is linearly independent.

If B spans V we say that it is a spanning set, even if it is not linearly independent. The definition

of basis also applies to the case of subspaces with obvious modifications.

Theorem 6.24 (Spanning Set Theorem). Let S = {v1, . . . ,vk} be a set in V . Let W denote the

span of S. Then the following hold true.

1. If vi is a linear combination of the other vectors in S, then if we remove vi from S the

remaining vectors still span W .

2. If W is not the zero subspace, then some subset of S is a basis for W .

Proof. We first prove 1. Upon possibly reordering the vectors in S, we can assume that it is vk to

be a linear combination of the other vectors. Say, we have

vk = a1v1 + · · ·+ ak−1vk−1.

Consider a linear combination of the vectors in S. This is a vector of type

w = α1v1 + · · ·+ αkvk.

Using the assumption on vk we get

w = α1v1 + · · ·+ αka1v1 + · · ·+ αkak−1vk−1.

Rearranging terms we get

w = (α1 + αka1)v1 + · · ·+ (αk−1 + αkak−1)vk−1,

which is a linear combination of the vectors in S excluding vk. This complets the proof of 1.

To prove 2, if the vectors in S are linearly independent, then we are done, since we have a basis.

If not, at least one of them is a linear combination of the other ones and it can be removed from

S without changing the span. We can keep doing this until we have removed all vectors that are

linear combinations of the others, and therefore this is a linearly independent set. Note that this

cannot be the set containing only zero vectors since W is not the zero vector subspace. �

6.3. Coordinate systems. We will see that vector spaces that admit a finite basis, behave very

much like Rn. This notion is formalized through coordinate systems. Roughly speaking, whenever

we have a basis consisting of n elements, we can make each of the basis vectors with one of the

canonical vectors of Rn, therefore transforming the initial vector space into Rn.

We start by showing an important property of bases.

Theorem 6.25. Let V be a vector space, and let B = {v1, . . . ,vn} a basis for V . Then, each

vector v in V can be uniquely decomposed in a linear combination of elements of B:

v = a1v1 + · · ·+ anvn.

Proof. The fact that we can decompose any v in terms of elements of B is obvious, since a basis is

a spanning set for V . The crucial thing to prove here is that this way of writing v in terms of the

elements of B is unique. Suppose now that we can write v in two different ways, i.e. we have

v = a1v1 + · · ·+ anvn

v = b1v1 + · · ·+ bnvn.
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Then, subtracting both equations we get

0 = (a1 − b1)v1 + · · ·+ (an − bn)vn.

Due to the fact that v1, . . . ,vn are linearly independent, it follows that the previous linear combi-

nation has to have all trivial coefficients, meaning that a1 − b1 = 0, and so on up to an − bn = 0.

This means that all the ai and the bi are equal to each others, showing that the way we can write

v in terms of elements of B is unique. �

The previous result allows us to pose the following definition.

Definition 6.26. Let V be a vector space and let B = {v1, . . . ,vn} be a basis for it. Given a

vector v in V , we say that the unique numbers a1, . . . , an that satisfy v = a1v1 + · · · + anvn are

the coordinates of v with respect to B. We indicate them by [v]B, or simply [v] for short, when it

is clear what basis B we are using.

Remark 6.27. Observe that when we consider a the coordinates of v, we have n numbers. Putting

them in a column, we obtain an element of Rn!

In particular, we can apply this construction to any basis of Rn. in other words, taken a basis B,

we can decompose any vector given in terms of the canonical vectors in B. The following example

shows this.

Example 6.28. Consider the basis B consisting of the vectors v1 =

[
2

−1

]
and v2 =

[
1

1

]
. We want

to decompose the vector v =

[
1

−1

]
in B. So, in other words, we need to find the solutions to the

equation

x1v1 + x2v2 = v,

which is

x1

[
2

−1

]
+ x2

[
1

1

]
=

[
1

−1

]
.

This is the same as the system of equations (in matrix form)[
2 1

−1 1

]
·
[
x1
x2

]
=

[
1

−1

]
.

Solving the system using any of the methods that we have studied so far, we find that x1 = 2
3 and

x2 = −1
3 .

Observe that in the previous example, we found a matrix PB that transformed the coordinates

of v from the basis B into the canonical basis of R2 . This was obtained by putting the vectors of

B into columns. The procedure in fact is general, and given a basis B of Rn, if we construct the

matrix PB by placing the vectors of B in the columns, we find a transformation that takes a vector

in the basis B and returns the decomposition in the canonical basis of Rn.

We will call PB the change of coordinate matrix. Of course, since PB is invertible (the columns

are linearly independent by construction!), we see that the matrix P−1B gives us a transformation

from the canonical basis to the basis B.

Theorem 6.29. The mapping corresponding to PB is one-to-one, i.e. it is an isomorphism.

Proof. We have already observed that the matrix is invertible. It therefore follows that the linear

map corresponding to the matrix is invertible. This means that it is one-to-one. �
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Theorem 6.30. Let V,W be a vector spaces and let B = {v1, . . . ,vn} be a basis for V . If we

define n vectors w1, . . . ,wn arbitrarily chosen in W , then there is a unique way of extending this

choice to a linear map T : V −→W , with the property that T (v1) = w1, . . . , T (vn) = wn.

Proof. First, we set T (vi) = wi for all i = 1, . . . , n. We need to extend this to a linear map over

the whole space V . Since B is a basis, any vector v admits a unique decomposition in terms of B:

v = a1v1 + · · ·+ anvn.

Then, we define T (v) = a1w1 + · · ·+ anwn. This definition is well posed, due to the uniqueness of

the coefficients ai. Moreover, the assignment is clearly linear (verify this!). Since T (vi) = wi by

construction, the results is proved. �

6.4. Dimension. We now introduce the concept of dimension of a vector space. This is an ex-

tremely important notion throughout mathematics and the sciences.

Lemma 6.31. Let B = {v1, . . . ,vn} be a basis of V . Then, any set S consisting of more than n

vectors is linearly dependent.

Proof. Let p > n and consider the set S = {u1, . . . ,up}. We want to show that S is linearly

dependent. We can transform the vectors in S into Rn using the mapping PB. When we consider

the coordinate vectors in Rn corresponding to the vectors ui, we obtain p vectors in Rn. They

are linearly dependent, since we know that any set with more than n vectors in Rn is linearly

dependent. We can therefore find a nontrivial linear combination

c1[u1]B + · · ·+ cp[up]B = 0.

By linearity of the construction of obtaining the coordinate vectors, we have

[c1u1 + · · · cpup]B = 0.

This means that PB(c1u1 + · · · cpup) = 0. But since PB is an isomorphism, we need to have

c1u1 + · · · cpup = 0, which gives us a nontrivial linear combination of the vectors ui that is equal

to zero. Therefore, S is linearly dependent. This completes the proof. �

We can now prove the following fundamental result.

Theorem 6.32. If B1 and B2 are two bases of V , then they contain the same number of vectors.

Proof. Let us set n to be the number of vectors of B1, and m the number of vectors of B2. Using

Lemma 6.31, since B1 is a basis, B2 must have at most n vectors, or otherwise it would be linearly

dependent. So, we find that m ≤ n. Now, using the same reasoning but exchanging the roles of B1

and B2, we find that n ≤ m. It follows that n = m and the proof is complete. �

From Theorem 6.32, it follows that the number of vectors found in a basis of a vector space is a

well defined quantity that only depends on the vector space.

Definition 6.33. If a vector space V can be spanned by a finite number of vectors we say that

it is finite dimensional. The number of vectors found in any of its bases is called dimension of V ,

and written dimV . We say that the zero space is zero dimensional. If a space cannot be spanned

by any finite number of vectors, then we say that it is infinite dimensional.

Let us now consider the case where we have a finite dimensional space V , and a subspace W of

V .
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Theorem 6.34. Let W be a subspace of the finite dimensional space V . Any linearly independent

set in W can be expanded to a basis of V . Moreover,

dimW ≤ dimV.

Proof. The fact that the dimension of W can at most be the dimension of V is clear, using

Lemma 6.31. We just need to show that we can add vectors to any set of linearly independent

vectors in W until we obtain a basis of V .

Suppose we have k vectors in W that are linerly independent. Let us call them v1, . . . ,vk. If

any vector of V is a linear combination of the vectors vi, then this is a basis. If not, we can find

a vector uk+1 that is not a linear combination of the vectors v1, . . . ,vk. These k + 1 vectors have

to be linearly independent, or otherwise uk+1 would be a linear combination of the vi, against our

choice.

We now proceed again with the new vectors vi and uk+1. If they span V , we are done. If not,

we can find another vector uk+2 that is not in the linear span, and it must therefore be true that

all the vi and the two uj are linearly independent.

Since V is finite dimensional, this process must stop, at which point we have a basis of V . �

Theorem 6.35. Let V be an n-dimensional vector space. Then, the two following facts hold.

1. Any set of n vectors that is linearly independent is a basis.

2. Any set ot n vectors that spans V is a basis.

Proof. We prove 1. If S is a set f n vectors that are linearly independent, we know (Theorem 6.34)

that we can extend S to a basis for V . Since V has dimension n, we cannot add any more vectors,

and S is already a basis.

We now prove 2. If S spans V , and S has n vectors, we know that a subset of S is a basis of V

(because we can prune it down to a set of linearly independent vectors). But since V has dimension

n, we cannot remove any vector. So, S is already a basis. �

We now prove the rank theorem.

Theorem 6.36. Let T : V −→ W be a linear map, were dimV = n. Then, the following equality

holds:

dim kerT + dim rank T = n.

Proof. Take a basis B for the subspace kerT of V . Suppose such a basis has k elements, and now

extend B to a basis P for V . In other words, we add n − k vectors to B. Let us indicate by

vi with i = 1, . . . , k the elements of B, and by wj , j = 1, . . . , n − k the elements that we have

added to B to obtain the basis P of V . The range of T can be written as the image of all vectors

in a basis for V . In other words, ran T = span {T (v1), . . . , T (vk), T (w1), . . . , T (wn−k)}. Since

T (vi) = 0 by definition of kernel, it follows that ran T = span {T (w1), . . . , T (wn−k)}. Therefore,

a basis of r elements for span {T (w1), . . . , T (wn−k)} would give that n = k + r. We show that

r = n − k, therefore completing the proof. In other words, we claim that all vectors T (wj) are

linearly independent. In fact, suppose by way of contradiction that this was not the case. Then,

we could find a linear combination (with nontrivial coefficients) such that

α1T (w1) + · · ·+ αn−kT (wn−k) = 0.

Using linearity of T we find T (α1w1 + · · ·+ αn−kwn−k) = 0, which means that the vector α1w1 +

· · · + αn−kwn−k is in kerT , against the fact that the wj were chosen to complement a basis for
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kerT , and therefore no linear combination of them could lie in kerT . This contradiction completes

the proof. �

7. Spectral Theory

We begin this important component of this course with the following definition of utmost im-

portance.

Definition 7.1. Let T : V −→ V be a linear map. Then, we say that v 6= 0 is an eigenvector of T

if T (v) = λv for some scalar λ. The scalar λ is said to be an eigenvalue. In this situation we say

that v is an eigenvector associated to λ.

Remark 7.2. One can reformulate the notions of eigenvector and eigenvalue above in terms of

matrices.

In this section we indicate the identity map 1, i.e. the linear map that is defined as 1v = v,

exactly as the identity matrix. The following result is relatively obvious, and it is left to the reader

as an exercise.

Proposition 7.3. The set of eigenvectors v associated to the eigenvalue λ is the kernel of the map

T − λ1,

with the exception of 0. Therefore, the set of eigenvectors associated to λ with the addition of 0 is

a subspace of V .

Definition 7.4. The subspace of V which is the kernel of T − λ1 is called the eigenspace of T

associated to λ, and indicated by Eλ.

Let us consider a simple case where we are able to completely determine the eigenvalues of a

linear map. We work with a matrix, here.

Theorem 7.5. Let A be an n× n matrix that is in (upper) triangular form. Then the eigenvalues

of A are exactly the entries on its diagonal.

Proof. A scalar λ is an eigenvalue if and only if (A − λ1)v = 0 for some vector v 6= 0. Let us

compute the form of A− λ1. We have that

A =

a11 · · · a1n
...

. . .
...

0 · · · ann


where everything below the main diagonal is zero. Then, A− λ1 is given by

A− λ1 =

a11 − λ · · · a1n
...

. . .
...

0 · · · ann − λ


where the lambdas appear only along the diagonal, since 1 has only ones along the diagonal, and

everywhere else it is zero. Then, (A−λ1)v = 0 has a nontrivial solution if and only if the equation

has a free variable. But this can happen if and only if one of the diagonal entries is zero, due to

the fact that below the main diagonal of A − λ1 there are only zeros. For a diagonal entry to be

zero, we need to have aii = λ for some i = 1, . . . , n. This comples the proof. �
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Theorem 7.6. Let v1, . . .vk be eigenvectors of T associated to distinct eigenvalues λ1, . . . , λk.

Then v1, . . . ,vk are linearly independent.

Proof. Suppose by means of contradiction that the vectors are linearly dependent. The vectors are

all nonzero, and therefore one of them must be a linear combination of the preceeding vectors. Let

p denote the smallest index such that vp can be written as a linear combination of v1, . . . ,vp−1.

We have

c1v1 + · · ·+ cp−1vp−1 = vp.(9)

Applying the linear map T ob both sides of the equation we get

c1λ1v1 + · · ·+ cp−1λp−1vp−1 = λpvp.(10)

Multiplying Equation (9) by λp and subtracting Equation (10) from it, we find

c1(λ1 − λp) + · · ·+ · · ·+ cp−1(λp−1 − λp)vp−1 = 0.

But this means that the vectors v1, . . . ,vp−1 are linearly dependent, against the fact that p was

the smallest index such that this happened. This contradiction shows that all the vectors must be

linearly independent. �

7.1. The Characteristic Equation. We have the following useful procedure for finding eigenval-

ues of a matrix.

Theorem 7.7. Let A be a matrix. Then the eigenvalues λ of A are the roots of the equation

det(A− x1) = 0.

Proof. To find the eigenvalues of A, we need to find the values λ such that the map A − λ1 has

nontrivial kernel. This means that the system (A − λ1)v = 0 admits nontrivial solutions for v.

But this is equivalent to saying that A − λ1 is not invertible, which means that det(A − λ1) = 0.

So, λ is a root of det(A− x1) = 0. �

Definition 7.8. The equation det(A − x1) = 0 whose roots give the eigenvalues of A, is called

the Characteristic Equation. Observe that the characteristic equation is a polynomial in x (why?),

called characteristic polynomial.

We now introduce a new notion which is very important in spectral theory. In addition to having

theoretical relevance, there also is a practical importance. In fact, several iterative methods for

finding eigenvalues of a linearp map are based on this definition.

Definition 7.9. Let A and B be square matrices. Then, we say that they are similar if we can

find an invertible matrix P such that B = PAP−1.

Of course, similarity is a symmetric property, in the sense that if B = PAP−1, then we can also

find an invertible Q such that A = QBQ−1, by just taking Q = P−1.

Remark 7.10. If two matrices are similar, it means that they simply represent the same linear

map in two different bases.

The following result is very important.

Theorem 7.11. If A and B are similar, then they have the same characteristic polynomial.
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Proof. Let B = PAP−1. Then, we have

det(B − x1) = det(PAP−1 − x1)

= det(PAP−1 − Px1P−1)

= det[P (A− x1)P−1]

= (detP ) · (det(A− x1)) · (detP−1)

= det(A− x1),

where we have used the fact that detP · detP−1 = detPP−1 = det 1 = 1. �

By converting a linear map into a matrix, the use of characteristic equations is also applicable

to linear maps. In fact, since it does not depend on the basis that we choose to construct a matrix

from the linear map, it follows that the approach is well defined.

Definition 7.12. The algebraic multiplicity of an eigenvalue is defined to be the multiplicity of

λ as a root of the polynomial det(A − x1). The geometric multiplicity of an eigenvalue λ is the

dimension of the eigenspace Eλ.

7.2. Diagonalization. Diagonalization is a fundamental result in spectral theory, and it is some-

what the motivating result.

Definition 7.13. A square matrix A is said to be diagonalizable if it is similar to a diagonal matrix.

The following result is a simplified version of the so-called Spectral Theorem.

Theorem 7.14 (Spectral Theorem). An n × n matrix A is diagonalizable if and only if it has n

linearly independent eigenvectors. Morevoer, A = PDP−1 if and only if P consists of columns that

are n linearly independent eigenvectors of A, and in this situation D has as diagonal entries the

eigenvalues of A.

Proof. Assume first that A is diagonalizable. Observe that A = PDP−1 is equivalent to AP = PD,

by multiplying the equation on the right by P . Now, suppose that P = [v1 · · ·vn], where vi are

the columns of P . Also, assume that D has the values λ1, . . . , λn along its diagonal. We have

AP = [Av1 · · ·Avn],(11)

and

PD = [λ1v1 · · ·λnvn].(12)

So, AP = PD means that Avi = λivi for i = 1, . . . , n. Since P is invertible, the columns must be

linearly independent, and vi 6= 0 for all i. Therefore, A has n linearly independent eigenvectors,

and these eigenvectors constitute the columns of P . This proves the first part of the if and only if.

Conversely, assume that A has n linearly independent eigenvectors v1, . . . ,vn with eigenvalues

λ1, . . . , λn. We can construct P by using vi as columns, and D as the diagonal matrix having λi
along the diagonal. Using Equation (11) and Equation (12), it follows that AP = PD. Since the

eigenvectors vi are linearly independent, we can find an inverse P−1 to P , from which we find

A = PDP−1. This completes the proof. �

To understand whether a matrix A can be diagonalized, we need to compute the eigenvalues and

eigenvectors. If there is a basis of Rn consisting of eigenvectors, then the matrix is diagonalizable,

otherwise it is not. The following result gives us a criterion that is easily applicable to determine

if a matrix is diagonalizable, without looking at the eigenvectors.
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Theorem 7.15. An n× n matrix A that has n distinct eigenvalues can be diagonalized.

Proof. Since each eigenvector vi belongs to a different eigenspace, applying Theorem 7.6 it follows

that there are n linearly independent eigenvectors. But n linearly independent eigenvectors in the

n-dimensional space Rn constitute a basis. Using Theorem 7.14 we complete the proof. �

When we have less eigenvalues, we can proceed according to the following result, whose proof

we omit.

Theorem 7.16. Let A be an n× n matrix with the distinct eigenvalues λ1, . . . , λp.

• For each k = 1, . . . , p, the geometric multiplicity is at most equal to the algebraic multiplicity.

• The matrix A is diagonalizable if and only if the sum of all the geometric multiplicities of the

eigenspaces Ek is n. This happens if and only if the characteristic polynomial factors into

linear factors, and each geometric multiplicity is the same as the corresponding algebraic

multiplicity. Equivalently, this happes if and only if the characteristic polynomial factors

into linear factors and the geometric and algebraic multiplicities of each eigenvalue are the

same.

• If A is diagonalizable and Bk is the basis for each Ek, then B = B1 ∪ · · · ∪Bn is a basis for

Rn.

Example 7.17. Let us now consider the problem of diagonalizing a matrix. Let

A =

 1 3 3

−3 −5 −3

3 3 1

 .
We want to determine whether this matrix is diagonalizable or not, and if the answer is positive, we

want to obtain the corresponding diagonal matrix. This means that we want to find an invertible

matrix P and a diagonal matrix D such that A = PDP−1.

From Theorem 7.14 we know that A is diagonalizable if and only if we are able to find a basis

for R3 consisting of eigenvectors of A. Alternatively, we can consider Theorem 7.16 and derive the

algebraic and geometric multiplicities. This is substantially equivalent.

First of all, we need to compute the eigenvalues, because from that we will be able to compute

the eigenvectors. The eigenvalues are the roots of the characteristic polynomial. Therefore, we

need to derive the characteristic polynomial and then find its roots. The characteristic polynomial

is given by p(x) = det(A− x1), which is

p(x) = det(A− x1)

= det

1− x 3 3

−3 −5− x −3

3 3 1− x


= −x3 − 3x2 + 4

= −(x− 1)(x+ 2)2.

From the factorization of p(x), we find the solutions x = 1 and x = −2. Therefore, the eigenvalues

of A are the numbers λ = 1 and λ = −2. Observe that −2 has algebraic multiplicity 2, since it is

a root corresponding to a linear factor repeated twice, while 1 has multiplicity 1, being a root of a

linear factor with no repetitions. So, we know that if A is diagonalizable, we would need to have

two eigenvector corresponding to λ = −2, and one eigenvector corresponding to λ = 1. Of course,
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the eigenvectors corresponding to λ = −2 and to λ = 1 are automaatically linearly independent

because they correspond to different eigenvalues. The problem is to find two linearly independent

vectors that are both eigenvectors of λ = −2.

Let us first find an eigenvector corresponding to λ = 1. This is the kernel of the linear map

corresponding to the matrix A− 1. So, we need to compute

ker

1− 1 3 3

−3 −5− 1 −3

3 3 1− 1

 .
So, we need to solve the matrix equation 0 3 3

−3 −6 −3

3 3 0

xy
z

 =

0

0

0

 .
Solving the system gives the only eigenvector v1 =

 1

−1

1

. Now we have to compute the kernel for

A+ 21, and obtain a basis for it. We need to solve the system

det

 3 3 3

−3 −3 −3

3 3 3

xy
z

 =

0

0

0

 .
We find that the solutions of this equation are vectors v =

xy
z

 with x+y+z = 0. The two vectors

v2 =

 1

−1

0

 and v3 =

 1

0

−1

 are a basis of this space, since they are linearly independent, and the

space is two dimensional.

We have therefore found three linearly independent eigenvectors, v1,v2 and v3 for the space R3.

Therefore, applying Theorem 7.14, it follows that A is diagonalizable. Of course, we will have

D =

1 0 0

0 −2 0

0 0 −2

 .
The matrix P is found by placing the vectors vi, i = 1, 2, 3, as its columns. We have

P =

 1 1 1

−1 −1 0

1 0 −1

 .
This completes the example.

7.3. Iterative methods for computation of eigenvalues. We consider now some numerical

methods for the computation of eigenvalues. In fact, to determine the eigenvalues of a matrix,

we need to solve a polynomial equation. This can be a very hard problem when the degree of the

polynomial is higher than 4. In fact, there are no direct formulas that give the roots of a polynomial

in general cases for degrees at least 5.
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The approach that we are considering now is called “Power Method” or “Power Iteration”,

because it involves the use of powers of the given matrix. Suppose we have a matrix A, which

is n × n. We assume that A has a strictly dominant eigenvalue, i.e. an eigenvalue λ1 such that

|λ1| > |λ| for all other eigenvalues λ. The method iteratively produces in this case a sequence that

converges to the value λ1, and a sequence of vectors that converges to a corresponding eigenvector.

We assume a simple case where A is diagonalizable, which means that there exists a basis

consisting of eigenvectors v1, . . . ,vn of Rn. The corresponding eigenvalues are λ1, . . . , λn (possibly

with repetitions), where λ1 is the dominant eigenvalue whose existence we have assumed in the

previous paragraph. We assume here that the eigenvalues are ordered according to

|λ1| > |λ2| ≥ · · · ≥ |λn|.

For an arbitrary vector v ∈ Rn, then we have

v = α1v1 + · · ·+ αnvn.

Since A acts on each vi as Avi = λivi, we have that Akvi = λki vi. Therefore, we have

Akv = α1λ
k
1v1 + · · ·+ αnλ

k
nvn,

from which we get

1

λk1
Akv = α1v1 + α2(

λ2
λ1

)kv2 + · · ·+ αn(
λn
λ1

)kvn,(13)

Since |λ1| > |λi| for all i = 2, . . . , n, we find that ( λiλ1 )k −→ 0 for all i 6= 1 as k → ∞. Therefore,

from Equation (13) we obtain that 1
λk1
Akv −→ α1v1 as k → ∞. Since v1 is an eigenvector, the

same is true for α1v1. Therefore, the procedure converges to an eigenvector of A.

One observation now is that this procedure converges to the “direction” of the egivenvectors,

since multiple scalars of eigenvectors are all eigenvectors of the same eigenvalue. But in order to

evaluate 1
λk1
Akv for large k and obtain α1v1, we should also know λ1, which is what we wanted

to know to start with. In general, Akv1 will have growing magnitudes in its entries (which are

balanced by λk1 when you divide by it). So, in practice, at each iteration step, i.e. each time with

take the power of A, we rescale the vector dividing by the absolute value of the larges entry of Akv

so that we bound the size of the entries of Akv as k grows. More precisely we will divide by the

norm, which is introduced shortly. The algorithm is the following.

Algorithm 1 Power Method for the computation of a dominant eigenvalue.

Require: Matrix A (n× n) . Given matrix with a dominant eigenvalue λ1
Ensure: Convergence to λ1 and to v1 . Produces λ1 and a corresponding eigenvector

1: Initialize iterations with some vector with largest entry 1: u0

2: while ‖ uk
‖uk‖ −

uk+1

‖uk+1‖‖ > τ do . Until we do not satisfy some convergence condition

3: Compute wk+1 = Auk . Apply A to previous guess

4: Compute ‖wk+1‖
5: Set uk+1 =

wk+1

‖wk+1‖
6: end while

7: Approximate solution of the eigenvalue problem uk . Output of the iterative procedure
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In Algorithm 1, we have used ||v|| to indicate the Euclidean distance between 0 and v. In other

words, if v =

a1...
an

 we have ‖v‖ =
√
a21 + · · ·+ a2n. This number is called the norm of v. When

we divide v by its norm, what we are doing is to determine only the direction of v, and we are

discarding the magnitude. In fact, the reader can show as a simple exercise that v
‖v‖ belongs to the

unitary sphere of Rn.

The condition ‖ uk
‖uk‖ −

uk+1

‖uk+1‖‖ > τ for convergence, therefore, tells us that until the direction of

the iterations does not stabilize we keep performing the iterations. The number τ , called tolerance,

is defined before initialization of the iterations, and it determines how accurate our solution will be

at the end of the power iterations.

The power method does not converge to any eigenvalue, but rather to the dominant one. However,

a modification of the approach can be used to produce other eigenvalues. Suppose in fact that we

have a number λ which is close to λ2. In other words, suppose that we have a guess for the

second largest eigenvalue λ2. Then, taking µi = 1
λ−λi , for each i = 1, . . . , n, it follows that µi is

an eigenvalue of (A − λ1)−1 for each i (check it!) with same eigenvector vi as A. Also, in the

assumption that λ is closest to λ2, µ2 will be a dominant eigenvector, and therefore we can apply

the Power Iteration (Algorithm 1) to the matrix (A−λ1)−1 to obtain the value µ2, from which we

can then obtain λ2.
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