LECTURE NOTES MATH 4423 - INTRODUCTION TO REAL ANALYSIS I &
II

EMANUELE ZAPPALA

1. INTRODUCTION

This is an introductory course in Mathematical Analysis. Roughly speaking, Analysis is the
study of functions and spaces of functions along with their properties. The main objects of study
are continuous and smooth functions, limits, sequences, convergence and metric spaces (i.e. spaces
where there is a notion of distance between objects). Our main reference will be [4], which is
colloquially known in the mathematical community as “Baby Rudin”. Other excellent references
include [1-3]. Any book of Calculus — e.g. [5] — can be considered as a prerequisite to this course.
We will focus on analysis where functions and spaces are over the real numbers, as opposed to
complex numbers, hence the name “Real Analysis”.

2. REAL NUMBERS

As the main topic of the course relies on the real numbers, it is important that they are properly
introduced. The approach we will follow is to first define the natural numbers N using an axiomatic
procedure based on the Peano axioms. From the natural numbers we will construct the integers
Z, and next the rational numbers Q. We will see that the rationals have “holes” and we will
construct the real numbers R to “fill these holes”. We will not prove several properties during such
constructions for the sake of simplicity.

The natural numbers are the numbers 0,1,2,... and Peano’s axioms are used to define their
arithmetic.

Axioms 2.1 (Peano Axioms). We consider the symbol 0, and a function S whose properties we
require with the following axioms.

1. 0 is a natural number.

2. For any natural number n, we have n = n.

3. For any pair of natural numbers n and m, n = m implies m = n.

4. For all natural numbers n,m,l, we have that n = m and m =1 implies n =I.

5. For any natural number n, if n =y for some y, then y is a natural number.
The function S is called the “successor function”, and it gives the “next” natural number of its
input. So, for instance, S(0) =1, S(1) =2 and so on.

6. For any natural number n, S(n) is a natural number as well.

7. If S(n) = S(m), then n =m.

8. There is no natural number n such that S(n) = 0.

9. If K is a set such that 0 is in K, and n being in K implies that S(n) is in K as well, then

K is the set of natural numbers N.

The last axiom, number 9, is particularly used in mathematics and it is called Peano’s Induction,
or simply the Induction Axiom.
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Using these axioms it is possible to define the standard operations on the natural numbers N,
such as sum and multiplication. They are, of course, what we already know since our young age.
Addition is defined recursively by means of the two defining properties

e n+0=n,
e n+S(m)=S(n+m).

Then, we can show, for instance, that n + 1 = S(n) as follows:

n+1 = n+5(0)
= S(n+0)
= S(n).

Similarly, one can show that n + 2 = 5(5(2)), n +3 = S(S(S(n))) and so on. This allows us to
define addition for all natural numbers (using induction!).
Multiplication is defined similarly from the two properties
en-0=0,
en-S(m)=n-m-+n.

All the properties of multiplication are derived from the two equations just listed.

Exercise 2.2. Show that S(0) acts as the unity. In other words, show that n - S(0) = n for all n.
In fact, observe that S(0) is precisely what we called 1, after all...

We have therefore defined the set of natural numbers N and endowed it with a notion of sum and
multiplication. It should be clear, at this point, that we do not have anything such as subtraction,
or division. This is in fact obvious from the fact that we have only “positive integers” so far, so if
we take a difference such as 5 — 7 we obtain a negative number, which does not make sense since
we have not invented them yet. Similarly, we incur in troubles with divisions since we do not have
anything like fractions as we did not invent them yet either.

It is clear that we need to invent something that allows us to subtract and divide. Let us do
one step at the time, and invent the numbers that allow us to subtract first. These are called the
integers, and indicated as Z. In everyday language, you represent them by putting a positive or
a negative sign in front of natural numbers. However, we like to do simple things in complicated
ways, and we therefore follow another route.

Let us define the set of pairs (n, m) where n and m are natural numbers. The intuitive meaning
of a pair (n,m) is the value n —m, as we shall see, but we did not invent subtraction so we cannot
do it just yet.

We declare two pairs (n,m) and (n/,m’) to be the same if it happens that n +m’ = n’ + m.
Before ruling that this is nonsense, we invite the reader to think of the previous analogy of (n, m)
and subtraction. This defines an equivalence relation between pairs, which decomposes the set
of pairs in equivalence classes. The class of pairs that are the same, according to the equality
n+m' =n’ 4+ m is indicated with the extra brackets [(n,m)].

We now introduce the operation of addition and multiplication between pairs. The addition is
defined simply as

[(n,m)] + [(n/,m")] = [n + n',m +m].
Multiplication is defined as

[(n,m)] - [(n',m))] = [(nn + mm/, nm’ + n'm)].
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Observe that we are only using addition and multiplication in the natural numbers (in each pair!)
to define these operations. In this setting, we can easily define the negative of an element by
switching the order of the elements in a pair:

_[(na m)] = [(m> n)]
Now we can simply define subtraction as addition of the negative element:
[(n,m)] = [(n',m")] = [(n,m)] + [(m, )],

where the sum is the one defined above.

The set of classes [(a,b)] is denoted by Z and it is called the set of integer numbers, or just the
integers. Here we identify the natural number n with [(n,0)], and the negative of n with [(0,n)].
Now that we have defined integers and subtraction formally, we will use the standard symbols —n
and n —m.

We now turn to our other problem: division. We will play the same game and define the rational
numbers Q using pairs of integers. We now consider the set of pairs of integers (a,b) where b # 0.
We define an equivalence relation between these pairs by saying that (a,b) and (¢, d) are equivalent
if ad = cd. Once again we obtain classes of elements which we denote as [(a,b)]. The intuitive
meaning of the pairs (a,b) is the familiar notion of fraction §. The equivalence relation simply
Z—(g = 3, because we can factor out g.
We define the addition of two classes as

[(a,0)] + [(¢, d)] = [(ad + be, bd)],

while we define multiplication as

states the common fact that

[(av b)] ’ [(07 d)] = [(ac7 bd)]

Obsereve that thinking of [(a,b)] as the usual fraction § one readily sees that the two operations

above simply coincide with the usual sum of fractions (using the common denominator), and usual
product of fractions! We now have a natural notion of division, simply saying that the inverse of an
element is given by swapping the order of the elements in a pair, and saying that dividing amounts
to multiplying by the inverse:

o, O a,b)] - c
(c.a) ~ (@0l

The set of numbers just constructed is the set of rational numbers, indicated by the symbol Q.
This is just the set of fractions we are all familiar with.

We now will see why the set of rational numbers is not completely satisfactory, in a sense.

Example 2.3. Consider the equation
2 =2.

We want to show that this has no solutions in Q. Suppose that we have a rational solution » = -,
which we can assume in such a way that n and m are coprime, since if they have a common factor
we could simplify it. Being a solution of the equation, we get that

n2

A
m? ’
which implies

n? = 2m2.
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This means that n? is even. But if n? is even, i.e. if 2 divides n?, then it must also divide n. So, n
is even. Therefore, n? is actually divisible by 4, not only by 2. This implies that 2m? is divisible by
4 as well, which means that m? is divisible by 2. Therefore, n and m are not coprime, being both
divisible by 2. This is in contradiction with our initial choice of n and m, and this contradiction
shows that a solution to #? = 2 cannot be in Q.

Of course, we know that a solution to 2> = 2 would be the square root of 2, v/2, and all the
roots of the equation are ++/2. The previous example shows that we need more than just rational
numbers. We need real numbers.

Example 2.4. Let A be the set of positive rational numbers p such that p? < 2. Let B be the set
of positive rational numbers p such that p? > 2. We can show that A does not contain any largest
number, and B does not contain any smallest number.

In other words, it is possible to show that for any p € A there exists a ¢ € A with ¢ > p, and
similarly for any p € B we can find a ¢ € B with ¢ < p. Given a p, we consider the fraction

2 2
(1) ¢= P12
p+2
from which we get
(2) q2_2:p_p2_2_2(p2_2>

p+2  (p+2)2°

If p is in A, then p? — 2 < 0 and Equation (1) shows that ¢ > p, while Equation (2) shows that
¢?> < 2, and therefore ¢ € A as well. Similar discussion can be done for B.

Example 2.4 shows that there are “holes” in the rational numbers. The set of real numbers
substantially fills these holes.

Before starting with the construction of real numbers, we will take a small digression on ordered
sets and ordered fields.

Definition 2.5. Let S be a set. An order on S, denoted by the symbol <, is a relation satisfying
the following properties:

e Given z,y € S only one of the following three cases happen, x <y, x =y or z > y.
e The transitive property holds: ifx < y and y < z, then z < z.

As usual, we can say that z < y or x = y in a compact way as = < y.
Definition 2.6. An ordered set is a set S along with an order defined on it.

Definition 2.7. Let S be an ordered set, and let E C S be a subset. We say that F is bounded
above if there exists 8 € S such that x < g for all x € E. We say that £ is an upper bound for F.
Similar definitions hold for bounded below, and lower bound. The reader is invited to adapt the
definition to that case.

Definition 2.8. Let S be an ordered set, and let E be a subset which is bounded above. An
element « is said to be a supremum, or least upper bound, if it satisfies the following properties:

e It is an upper bound.
e If v < «, then v is not an upper bound for E.

The supremum of E is denoted by the symbol sup E. Similar definitions hold for infimum, or
greatest lower bound. Once again, the reader is invited to adapt the definition to that case.
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Definition 2.9. We say that an ordered set S has the least-upper-bound property if the following
holds true. For any subset E C S which is not empty and bounded above, then sup E exists.

Theorem 2.10. Let S be an ordered set with the least-upper-bound property, and let B be a
nonempty set bounded below. Let L be the set of all lower bounds of B. Then a = sup L ex-
ists, and o = inf B.

Proof. First, we want to show that a = sup L exists. Since S has the least-upper-bound property,
this would follow by showing that L is not empty, and that L is bounded above. To show that L
is not empty, we need to show that B has at least a lower bound. However, since B is bounded
below by assumption, this follows immediately. To show that L is bounded above, we need to show
that there exists at least an element x in S such that x > y for all y € L. Since L is a set of lower
bounds of B, it follows that if z € B and y € L, we have y < x. Also, since B is not the empty set
by assumption, such an x exists. This completes the first part of the proof.

Next, we show that a = inf B. This means, by definition of infimum, that « is a lower bound
of B with the property that whenever we pick a § > « then 8 cannot be a lower bound of B. So,
to complete the proof, we need to show the two facts that « is a lower bound of B, and that no
larger than « is a lower bound. For the first fact we proceed as follows. First, let v < a. Since « is
the supremum of L, it follows (from the definition of supremum) that - is not an upper bound for
L. This latter fact in turn implies that v cannot be in B. So, in particular, no element of B can
be smaller than «. This means that a < « for all v in B, and therefore « is a lower bound of B,
i.e. that a € L. We are just left to show that « is such that no f > « can be a lower bound for B,
i.e. there cannot be an element in L which is larger than «. But this follows from the fact that «
is the sup of L, by definition. This completes the proof. O

The following is a fundamental definition in all mathematics (and applications such as theoretical
physics).

Definition 2.11. A field is a set k with two operations, usually denoted by + and -, satisfying the
following properties.

e Addition + is commutative.

e Addition + is associative.

e There is an element in Kk, denoted by 0, with the property that  + 0 = x for all z.

e For every z € K there is an element in —z € K such that = + (—z) = 0.

e Multiplication - is commutative.

e Multiplication - is associative.

e There is an element 1 # 0 such that z -1 = z for all x.

e For every x € k*, the set of nonzero elements, there exists an element % € Kk such that
x - % =1

e Multiplication distributes over addition, i.e. x(y + z) = xy + zz.

Remark 2.12. The usual conventions used for R will hold, for instance we will write x — y for
x + (—y) and so on.

Exercise 2.13. Check the following (precisely stating what conditions fail):

e N, Z are not fields.

e Q,R,C are fields.
e H (the quaternions) is not a field.
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e Z, is a field if and only if n is prime.

Note that we did not really invent yet R, and therefore C and H. However, since the reader has
already had enough practice with them, we will forgive this anachronistic exercise.

Definition 2.14. An ordered field is a field k endowed with an ordering (i.e. it is also an ordered
set) such that the following two conditions hold:

o If y <z then x +y < x+ 2 for all z.

o If x,y > 0, then zy > 0 as well.

The main result of this first part of the course is the following.

Theorem 2.15. There exists an ordered field R which contains Q as a subfield, and has the least-
upper-bound property.

We will defer the proof of this fundamental theorem to a later part of the course, but we will
derive some important consequences nonetheless.

Theorem 2.16. The following two facts hold.

(a) For every x > 0 and y € R, there exists a natural number n € N such that nx > y. As a
special case, for any real number y, we can find n € N such that n > y.
(b) For every x,y € R with x # y, there exists a p € Q such that x < p < y.

Proof. We prove (a) first. Let A be the set of all numbers of the form nz, where n runs over all
natural numbers N. Let us assume by way of contradiction that the assertion is false. Then, y
is an upper bound for A, since nx < y would hold for all n. Since R has the least-upper-bound
property, there exists the supremum « = sup A. Since x > 0 by hypothesis, we have that a—z < a.
This means that a — z is not an upper bound (by definition of supremum), and therefore there
is an element of A, say ma for some m € N, such that a — x < max. However, this means that
a<z+mx=(m+ 1)z. Since m+ 1 € N, it follows that « is not the supremum of A, which is a
contradiction. We leave the proof of the special case to the reader. Therefore, (a) is proved.

Let us now prove (b). Since x < y, we have that y —x > 0. Using (a) we find a natural number
n such that n(y —x) > 1. Applying (a) again twice (or better to say, its special case) we can find
m1 and my such that m; > nx and mo > —nax. This means that we have the inequalities

(3) —mg < nx < mj.
We can therefore find an integer m with the property that —mso < m < my, and such that
(4) m—1<nz<m.
Using (4) and the fact that n(y — ) > 1, we find that
(5) nr <m <1+nx <ny.
m

It then follows that x < 7* <y, which is what we wanted to prove by setting p = 7 O

.
Exercise 2.17. In the previous proof, we used the fact that from —ms < nz < m; it follows that
we can find m such that m — 1 < nz < m. Prove this fact. [Hint: Use induction wisely.]

Now we show a fundamental result of the real numbers, which was our motivation to embark in
the construction of R.

Theorem 2.18. For every real number x > 0, and every integer n > 0 there is one and only one
positive real y such that y" = x.
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Proof. First, we mention that if such a number y exists, this has to be unique. In fact, assuming
otherwise, let y; and y2 be two such numbers. Since R is ordered and y; # y2, it must hold that
y1 < y2 or yo < y1. Without loss of generality, assume that y; < y. Since R is an ordered field, it
follows that y' < ¥4, and therefore z < z, which obviously nonsense. This means that y has to be
unique, if it exits.

We now show existence. Let E denote the set of all positive real numbers ¢ such that t" < x.
Consider the number ¢ = 1%: Then, it follows that 0 <t < 1 and therefore t" <t < x. Therefore,
FE is not the empty set. Consider now any number ¢ > 1 + x. Then, t" > ¢ > z, which means that
such ¢ would not be elements of FE. This means that 1 4 z is an upper bound of E. Using the
least-upper-bound-property of R, there is an upper bound y = sup E. We now claim that y is the
number we seek.

To show that, we proceed by contradiction. We first assume that 4™ # x. Therefore, it must
hold either y™ < x, or y™ > x. We show that either of the inequalities will lead to a contradiction,
which would conclude the proof.

First observe that if b —a > 0, with both a,b > 0 one has that b" —a™ = (b—a)(b" ! + ab™ 2 +
<o+ 4 a™ 1) implies b — a™ < (b — a)nb™ 1. This fact will be useful in the rest of the proof.

Case: y™ < z. We choose 0 < h < 1 such that h < —2=y" _ Puta= y and b =y + h. Then,

n(y+1)r=t
we have that

(6) (y+h)" —y" <hn(y+h)" <hn(y+1)"1 <z —y"

It therefore follows that (y + k)™ < x. But since y + h > y, this means that y cannot be the

supremum of E, which is absurd.
y"—z

Case: y"™ > x. We put k = g1 which implies that 0 < k < y. If t > y — k, we get
(7) Yt <yt = (y— k)" <kny" Tl =y -

So, we find that t" > x, which means that ¢ is not in F. Therefore, y — k is an upper bound for
E. But y — k < y, against the fact that y is the supremum of E. This means that y™ > x is false.
The proof is now complete. U

3. TOPOLOGY OF METRIC SPACES

In this section we will introduce some basic notions of topology. While our focus will be on
metric spaces (which we will introduce in this section), some elementary definitions will be given
in general terms for more abstract topological spaces.

Topologies over a set give a notion of “being close” even when the space does not have a numerical
quantification for such a term. For instance, for real numbers one can consider the absolute value
of the difference of two numbers as the quantification of how far apart they are. On abstract sets,
however, it is unclear how such a quantification would be defined. In particular, topologies allow
us to define “neighbor” elements, which is of significant importance throughout the sciences.

Definition 3.1. Let X be a set, and T a collection of subsets of X. Then, we say that T is a
topology on X if the following condition are satisfied:

e The empty set () and the set X are in T.
e Arbitrary union of elements in T is in 7.
e Finite intersection of elements in T is in 7.

Elements in T are called open sets, while complements of open sets are called closed sets.
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The fundamental idea in topology is that elements that can be separated “easily” by open sets
are far apart, while if two points are not easily put in two different open sets are close to each
others. Let us consider a very familiar example. We will denote by P(X) the power set of a given
set X, so a topology T is a subset of the power set P(X) of X.

Example 3.2. Let X be a set. The simplest topologies on X are the two most obvious ones:
e T ="7(X).
o T={0,X}.

It is immediate to show that they are both topologies.

Example 3.3. A less boring topology on a set with 4 elements X = {1,2,3,4} is the following,
T ={0,{2},{1,2},{2,3},{1,2,3},X}. One can verify directly that the union of elements in T is
still in 7, and that intersections of elements in T are still in J.

Example 3.4. Consider R with the following set T C P(R). We say that A is in T if for every
point 2 € A, we can find an interval (p, q) containing x and contained in A, z € (p,q) C A.

Let us verify that this is indeed a topology. First, observe that () vacuously satisfies the definition
of being in 7, and it is therefore open. It is also clear that R is in T as well, since any interval is a
subset of R, and we can always find an interval containing any chosen element of R. Let Ay, be a
family of elements in T, where the index set has arbitrary cardinality (we need arbitrary unions!).
We want to show that the union A = J,c, A; is in T as well. Let # € A be an element of the
union. Then, z € A; for some ¢t € 7. Since A, is open, there is an interval (p,q) containing = such
that (p,q) C A;. But then (p, ¢) is an interval contained also in the union A. Therefore A is open,
since x was arbitrary. Similar reasoning can be used to show that finite intersections of open sets
are still open. We show this for two open sets. The reader then can either directly generalize the
argument to arbitrary (but finitely many) open sets, or can use an inductive argument to show
that it holds for any (finite) number of open sets. Let A and B be open sets. Then, let AN B
denote their intersection. If AN B = () there is nothing to show, since we already know that () € 7.
Suppose z € AN B # (). Since A is open, we can find x € (p1,¢1) C A. Similarly, since B is open,
we can also find x € (p2,q2) C B. Since Q is dense in R by Theorem 2.16 (b), it follows that we
can find x < ¢ < min{q1, g2} and max{p1,p2} < p < z. It is clear that (p,q) C A, B and = € (p, q),
showing that AN B is open as well.

Therefore, T is a topology on the real numbers. This topology is called the Fuclidean topology
of R.

Exercise 3.5. Show that if {C}} e, is an arbitrary family of closed sets, then (), ; C;j is closed.
So, while only finite intersections of open sets are open, arbitrary intersections of closed sets are
closed.

What can you say about unions of closed sets?

There is a general way of definining a topology by listing a set of subsets with some additional
properties.

Theorem 3.6. Let X be a set and let B be a set. Then, the set of all unions of elements of B
defines a topology on X if and only if B satisfies the following two properties:
(1) Upes B = X.
(2) If By and By are elements in B, and x € By N Bag, then there is an element B € B such
that x € B C B1 N Bs.
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Proof. Suppose first that 7T, defined as the set of all unions of elements of B is a topology. We want
to verify that (1) and (2) hold. Since X is always an element of a topology, it means that X € T,
which means that X can be written as the union of elements in B. This shows (1). To show (2),
since finite intersection of elements in 7 is in T, and since B C T, we find that B; N By € T. This
means that By N By = Uy, By for some index set 7 and elements B; of B. Given x € By N By, there
must exist some By such that z € By. Clearly By C Uier By = By N By, which shows (2).

Conversely, let us now consider a family B satisfying both (1) and (2). Defining T to be the
family of all unions of elements of B, we want to verify that such 7 is indeed a topology. Observe
that X € T by (1), and also ) € T since it is the empty union of elements from B. It is clear that
the union of A;, with ¢ € 7 some index set, and A; in T results in an element of 7. We need to
verify that the intersection of two open sets is still open. Observe that from (2), we find that for
any Bi, Bs € B, we have the equality

(8) BiNBy=|J{CeB|CcCBiNBy}.

If Ay, Ay are elements of T, then by definition we have A1 = U;U; and Ay = U;V; for open sets U;
and V;. Then, we have that

(9) Andy = JuinV;=J{CeB|CcUinV}
i,J
This completes the proof. O

Definition 3.7. A family B satisfying the properties (1) and (2) in Theorem 3.6 is called a basis
for the topology 7.

Example 3.8. Let us define now the Sorgenfrey line. This is the set of real numbers R with
the topology T where the basis B is defined as the set of all semi-closed intervals [a,b). One can
immediately see that such B is indeed a basis, and therefore T is a topology.

The following definition plays a fundamental role in all analysis.

Definition 3.9. Let X be a topological space, and B C X. We then define the following concepts.
(1) The set obtained by taking the union of all open sets contained in B, denoted by B° and
called the interior of B.
(2) The set obtained as the intersection of all closed sets containing B, denoted by B, and
called the closure of B.
(3) The set OB := B — B°, called the boundary of B.

The elements of B° are also called interior points of B.

Exercise 3.10. Show that a set B is open if and only if B = B°, and it is closed if and only if
B = B.

Definition 3.11. A subset A of a topological space X is said to be dense in X if A = X.

Example 3.12. In Theorem 2.16 we have shown that given two real numbers x, ¥y, we can find a
rational p such that x < p < y. This means that Q is dense in R with the Euclidean topology. In
fact, A intersects any open set of R (because it intersects all intervals!). So, the only closed set of
R that contains Q is R itself. Therefore, Q = R.

Definition 3.13. Let X be a topological space, and let = be an element of X. We say that the
subset U C X is a neighborhood of x if x € U°. In other words, if z is an interior point of U, we
say that U is a neighborhood of x.
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The fundamental idea of using topological spaces, is that it allows one to define continuous
functions in a very general way. Here we will also call functions simply as maps, to indicate that
the domain and target are arbitrary (not necessarily numerical sets).

Definition 3.14. Let X,Y be topological spaces, and let f : X — Y be a map between them.
Then, we say that f is continuous if f~*(V) is an open set of X whenever V is an open set of Y.
In other words, the preimage of open sets is open.

Remark 3.15. Observe that continuity is equivalently defined as f~1(C) is closed in X whenever
C is a closed subset of Y. This is shown by considering the complements.

Theorem 3.16. Composition of continuous maps is continuous.
Proof. Left to the reader as an (important) exercise. t

Definition 3.17. Let X,Y be topological spaces. A continuous bijective map f: X — Y is said
to be a homeomorphism if the inverse f~! is continuous as well. The spaces X and Y are said to
be homeomorphic, if an homeomorphism between them exists.

Definition 3.18. Let X be a set. Then, a metric, or distance on X, isamap d: X x X — R
satisfying the following conditions.

(1) d(z,y) > 0 for all z,y, and d(z,y) = 0 if and only if x = y.

(2) d(z,y) = d(y, z) for all x,y.

(3) d(z,2) < d(x,z) 4+ d(y, 2) for all z,y, z.
Condition (3) is called the traingular inequality. A set X endowed with a metric d is called a metric
space, and often denoted as a pair (X, d).

Example 3.19. Let X be a set. Define the following map

d(x,w:{(l’ ;z

Then, d defines a metric on X.
Example 3.20. Consider the space R™ and define
d(z,y) = \/(xl —y1)? + o+ (T — yn)?

Then R™ is a metric space with such d. This is called the Euclidean space, and the metric is called

the Euclidean metric of R”. It is clear that when n = 1.

The only property of metrics that is not trivially satisfied in this example is the triangular
inequality. To this purpose, define ||z|| = d(z,0), which is called the norm of z. Observe that
d(z,y) = ||x —y|| follows from the definitions. Then, showing the triangular inequality is equivalent
to showing that ||u + v|| < |lu]| + ||v]|, where we are setting x — z = u and z — y = v. Equivalently,
this is the same as showing that (||u|| + ||v]|)? — ||u + v||> > 0. Defining = -y = >_ x;y;, we have
2(ull?[0]]2 = (u-0)2) = (Jull + [0])2  lu+v]]2. So, we will just prove that |ull? [v]Z — (u-v)? > 0,
which is known as Cauchy-Schwarz inequality, and complete.

Observe that when v = 0, there is nothing to prove. So, we can assume that v # 0, and define
w = uljv]| = (u- U)”Z—” One directly sees that ||w||? = ||u/|?||v||* = (u - v)2. Since ||w||?> > 0, the
Cauchy-Schwarz inequality follows, and therefore the triangular inequality follows as well.

Metric spaces are of fundamental importance in analysis. They are automatically endowed with
a natural notion of topology induced by the metric, as we now see.
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Definition 3.21. Let (X, d) be a metric space. Then, given x € X and p > 0, the set B(z,p) =
{y €Y | d(z,y) < p} is called an open ball around x with radius p, or also just an open ball, or a
ball.

Definition 3.22. Let (X,d) a metric space. We say that a subset A C X is open if whenever
x € A, there exists a p > 0 such that B(z,p) C A. The topology induced by d is the family T
consisting of all open sets so defined.

Exercise 3.23. Let X = R, Y =R, and let f : X — Y be a continuous map (according to
Definition 3.14), where X and Y have the topology induced by the metric d defined in Example 3.20
with n = 1. Show that continuity in this sense gives the (in)famous € — § definition of continuity
that is (usually not) seen in Calculus I.

Exercise 3.24. Show that the topology induced by d as in Example 3.20 with n = 1 gives the
topology of Example 3.4.

Exercise 3.25. Show that open balls in a metric space satisfy the conditions of Theorem 3.6 to
induce a topology. Then, show that the topology induced by a metric d is the same as the topology
having open balls as its basis.

Definition 3.26. Let (X, d) be a metric space and let B and U be subsets of X.

e Then, we say that B is bounded if there is a ball B(x, p) such that B C B(x, p). Note that
x does not need to be taken inside B.

e An element x is said to be a limit point, or accumulation point, for the subset U in X, if
every neighborhood of = contains elements of U that are distinct from x itself. If z is not
accumulation point for U, but it belongs to U, then it is said to be isolated.

Theorem 3.27. Let X be a topological space. Let E C X be a subset, and denote by E’ the set of
accumulation points of E. Then,

e E=FEUE".

e F=FEUE if and only if E is closed.

Proof. Observe that according to the definitions, E is the intersection of all closed sets containing
E. So, the first equality is proved if we show that E’ is contained in any closed set that contains
E, and also that E'U E’ is closed (i.e. it is itself one of the closed sets containing F).

Let F be a closed set containing F, and let 2 be an element of E’ (i.e. an accumulation point)
which is not in F. Since F is closed, X — F' is open, and since x is not in F, z € X — F. This
means that X — F' is a neighborhood of x. But F' contains F, so that X — F' does not intersect
FE, meaning that x has a neighborhood that does not intersect E, against the fact that it is an
accumulation point. This is absurd, and therefore there cannot be any accumulation point of E
not contained in a closed set containing E. This means that E’ is a subset of the intersection of
all closed sets containing . We want to show now that E U E’ is closed, which would complete
the proof of the first part. To show that it is closed, we need to show that its complement is open.
Then, let x € X — (F U E’"). We need to find a neighborhood of z contained in X — (E'U E’). To
this scope, take a closed set I’ containing F, and such that x is not in F. This can be done because
x is not an accumulation point. As already shown, £/ C F. This means that X — F' is open and
contained in X — (E U E’). But then it follows that X — F' is a neighborhood of x contained in
X — (EUE'). Therefore, X — (E'U E’) is open since we can perform the previous procedure for
any © € X — (E U E’). This shows that E U E’ is closed, and therefore £ = E U E'.
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We already know that a subset of a topological space is closed if and only if it is equal to its
closure, i.e. E is closed if and only if E = E. Since E = EUE' from the previous part of the proof,
this part also follows. O

Corollary 3.28. Let E be a nonempty set of real numbers which is bounded above, and let y =
supE. Then, y € E. In particular, if E is closed, y € E.

Proof. First, observe that if y € E (i.e. y is the maximum of E) then y € E by definition. So, we
can simply consider the case y ¢ E. For any choice of h > 0, by definition of supremum, we have
that y — h is not an uppear bound for . Therefore, this means that there is at least an element
z € E with y > 2« > y — h. In other words, any ball around y contains elements of £. This means
that vy is an accumulation point for E, so y € E’, where E’ denotes the set of accumulation points
of E. By Theorem 3.27 it follows that y € E. When E is closed we know, as already seen before,
that £ = E and therefore the second statement follows immediately too. O

Remark 3.29. Analogous result holds for a subset bounded below, where sup needs to be changed
to inf.

Remark 3.30. If Y C X is a subset of a topological space, then there is a natural topology
automatically defined on Y. This is the topology given by the family Ty obtained by taking the
intersection of the open sets of X with Y. So, U € Ty if and only if U = V NY for some open V of
X. Therefore, we will talk of properties relative to subsets of a topological space, meaning that the
definition applies to them with respect to the induced topology. For instance, we will talk about
closed subsets of a subset Y of X and so on.

We now consider the notion of compact spaces.

Definition 3.31. Let E C X be a asubset of the topological space X. Then, an open cover of E
is a family of open sets {G,} such that £ C |, Ga.

Definition 3.32. A subset K of the topological space K is said to be compact if for any open cover
{Gy} of E, there is a finite subcover, i.e. we can find finitely many indices ayq, ..., o, such that
EcUL, Ga;-

Remark 3.33. Compact sets play a fundamental role in Analysis. They give us a pathway to pass
from infintely many objects to only finitely many.

Example 3.34. We will show later that there is a very important class of compact sets in R™.
These are the closed balls, i.e. B(x,p) = {y € R" | d(z,y) < p}, where d is the Euclidean distance.

Theorem 3.35. Let f: X — Y be a continuous function, and let X be compact. Then, f(X) is
compact in 'Y .

Proof. Let {V,} be a collection of open sets of Y covering f(X). Then, since f is continuous, every
preimage U, := f~!(V,lpha) is open in X. Moreover, the U,’s cover X. Since X is compact, we
can find a finite subcover. The image of this subcover consists of finitely many V,’s that cover
f(X), showing that f(X) is also compact. O

Theorem 3.36. Compact subsets of metric spaces are closed.

Proof. Let K be compact in X, metric space. We want to show that X — K is open (which would
mean that K is closed by definition). Let x € X — K, and for every y € K consider the ball around
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y of radius p, := “Z%  B(y, p,). For any chosen y, p, < d(z,y), therefore z is not in B(y, p,).
y 2 y y Y

Since each y belongs to one of the balls — it is certainly in the ball B(y, p,) of which it is center —
the family of balls covers K: K C Uy B(y, py). Being compact, K can be covered with only finitely
many of them, so we can find yi,...,y, such that K C (U B(yi, py,). Of course, we find that

A =, B(yi,py;) is an open set, being union of open sets. Also, by construction z is not in A
(because it is not in any of the balls!). We can also say more, if 0 < r < min{py, }, B(x,r) does not
intersect any of the balls B(y;, py,), and therefore it does not intersect A. This means that x is an
interior point to X — K. Since we can do this for any x € X — K, it means that X — K consists
only of interior points, which means it is open. This completes the proof. ]

Theorem 3.37. Closed subsets of compact sets are compact.

Proof. Let F' C K be closed in X, and let K C X be compact. Let {V,} be an open cover of F.
Since F is closed, A = X — F is open, and {V,,} U{A} is an open cover of K. So, we can find an
open subcover, i.e. we can find finitely many «; such that KX C [J, Vi, |JA. Since F' C K, we
also have F C |J;~, Vo, UA. But A =X — F, so A does not contribute to the previous inclusion
and we can remove it without changing it. We have F' C |J!' | V,,, but this means that we have
found an open subcover of F' from {V,}. So, F' is compact. O

Corollary 3.38. If F' is closed, and K is compact, then F N K is compact.

Proof. Since K is compact, it is also closed by Theorem 3.36. We have that F N K is closed as
well, being the intersection of two closed. Since FFN K C K is a closed subset of a compact, by
Theorem 3.37 it is also compact. ]

Theorem 3.39. If {K,} is a collection of compact subsets of X with the property any intersection
of a finite subcollection of Ko ’s is nonempty, then (), Ko # 0 as well.

Proof. We fix a member K, of {K,}. Set G, = X — K, for all a # *. Suppose that K, does
not intersect every K,. Then, it means that every element of K, belongs to some G,. In other
words, K, C Uai* G Since K, is compact, we can find finitely many «’s, say «aq, ..., o, such that
K, C Goy U---UG,, . However, this means that K, N K,, N---NK,, =0, against the hypothesis
that every choice of finitely many of K, have nonempty intersection. This contradiction proves the
result. g

The following corollary will be very useful in this course.

Corollary 3.40. If {K,} is a sequence of nonempty compact sets such that K,+1 C K, for alln,
then (o2 Kn #.

Theorem 3.41. If E is an infinite subset of a compact set K, then E has an accumulation point
m K.

Proof. Since no point of K is accumulation point of F, for any choice of x € E we can find a
neighborhood V;, of « which intersects £ at most in a single point (which is x if x € E). Since F is
infinite, no finite subcollection of {V, } can cover E, and therefore no finite subcollection can cover
K, against the fact that K is compact. So, K must have some accumulation point of F. g

Theorem 3.42. Let {I,} be a sequence of closed intervals in R with the property that I+ C I,
for all n. Then, (2, In # 0.
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Proof. Let I, = [an, by] for all n. Define E = {a; | i € N}. The set E is clearly nonempty, and since
I,+1 C I, it is bounded above by b; (why?). Let 2 := sup E. For all natural numbers n,m € N we
have the inequalities

an < Apgm < bn+m < bm,

which implies that x < b, for all m. Obviously, x > a,, for all m by definition. Therefore, x € I,
for all m, and the intersection is not empty. ]

Theorem 3.43. Let k € N and let {I,} be a sequence of k-dimensional closed hypercubes of RF
with the property that Ini1 C I,. Then, (., In # 0.

Proof. For every n, let the hypercube I,, consist of the product of intervals I,, = [a],b}] X - -+ X
lag,by] = I} x - x I,lf. Every interval satisfies the hypotheses of Theorem 3.42, so we can find a
point z} in I for j=1,...,k and all n € N. It follows that z* = (x7,...,x5) is in the intersection
of all I,,. O

Theorem 3.44. Every closed k-dimensional hypercube is compact.

Proof. Let I = [a1,b1] x -+ X [ag, bg]. Define § = \/(by —a1)2+ -+ + (bg — ax)?. Then, if z,y € I
we have that d(z,y) < 0. We proceed by way of contradiction. Suppose that there is an open cover

Gq of I which does not contain any finite subcover. We set ¢; = % ;rbj for j =1,...,k. Define the
intervals [a;, ¢;] and [c;,b;] for all j = 1,..., k. Then, this gives us 2* smaller hypercubes @; whose
union is equal to I. Since I cannot be covered by finitely many G, ’s, it follows that at least one of
the hypercubes @; cannot be covered by finitely many of the GG, ’s. Let us call this hypercube Is,
and denote the initial I as I. It is clear that Io C I;. Iterate this process and subdivide I; in 2k
sub-hypercubes and continue. At each step, we obtain I,,+1 C I,,. We have the following additional

properties of our sequence of hypercubes:

e No I, can be covered by finitely many G,’s.
e For each z,y € I, we have d(z,y) < 27"H14.

Applying Theorem 3.43 it follows that there is a point 2* € ()~ I,. Since the G,’s cover I, and
the intersection of all I, is contained in I, it follows that z* € G, for some a. Since G, is open, it
follows that there is a ball around z* of some radius, say r > 0, such that B(z*,r) C G,. Taking n
large enough to satisfy the inequality 27§ < r, then it follows that I,, C B(z*,r) C G, against
the fact that no I,, can be covered by finitely many G, ’s. This contradiction proves the result. [

Theorem 3.45 (Heine-Borel). Let E C R* be a subset. Then, the following properties are equiva-
lent.

(i) E is closed and bounded.
(ii) E is compact.
(iii) Fwvery infinite subset of E has an accumulation point in E.

Proof. [(i) = (i1)] If E is bounded, then we can find a ball B(z, p) containing E. This means
that we can find a closed hypercube I of side p containing E as well. Since [ is compact and FE is
closed, F = E N1 is compact by Corollary 3.38.

[(i1) = (uit)] This is the content of Theorem 3.41.

[(i7d) = (i)] We proceed by contradiction. If E is not bounded, then it has a sequence of
points x,, where d(x,,0) > n for all n. This is because whenever we choose a ball around 0 of radius
n, the ball cannot contain F, so we can find an x,, outside of the ball. The set of such elements x,,
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cannot have an accumulation point in E. This contradiction means that E is bounded. Suppose
now that E is not closed. Then, this means that £ # E. Since E C E is always true, it follows
that E not being closed implies that there is an acumulation point of £ which does not belong to
E. Let us call this element z*. By definition of accumulation point for every n we can find z,
in the ball B(z*, %) In other words, d(z,,z*) < % Denote by S the set of the points z,. It is
clear that S is an infinite set having only z* as limit point. This contradicts property (iii), which
completes the proof. O

Theorem 3.46 (Weierstrass). Every bounded infinite subset E of RF has an accumulation point
in R¥.

Proof. Since F is bounded, we can find a hypercube I which contains E. This hypercube is compact.
Then, F is an infinite subset of a compact and bounded. Therefore, by Theorem 3.45 there is a
limit point of E in I. O

We can now prove a very important result of what we have done so far.

Theorem 3.47. Let f : X — R be a continuous function where X is compact. Then, f attains
its mazimum and minimum on X.

Proof. Since f(X) is compact in R (Theorem 3.35), it is closed and bounded. Since it is bounded,
it has a supremum and a infimum. Being closed, supremum and infimum are in f(X), so they are
maximum and minimum (Corollary 3.28 and Remark 3.29). O

Corollary 3.48 (Extreme Value Theorem). Lef f : [a,b] — R be continuous. Then, f attains its
mazximum and minimum values in [a, b].

Proof. Intervals are compact by Theorem 3.44, and we can therefore apply Theore 3.47. ([l
Definition 3.49. We say that a set is perfect if it is closed, and it has no isolated points.

The main property of perfect sets is that every point is an accumulation point, and therefore we
can approximte any point in the set by means of other points in the set.

Exercise 3.50. Show that if P is perfect, then we have P = P’, where P’ indicates the set of
accumulation points as before.

Perfect sets in R¥ are large. We show this in the following.
Theorem 3.51. Let P be a nonempty perfect set in R*. Then P is uncountable.

Proof. Since P has at least one limit point, P must be infinite. By way of contradiction, we suppose
P countable. Pick one element z; of P, and let V; denote any open neighborhood of x;. We want
to construct a sequence of open sets V,, with bounded closure containing an element z,, of P by
induction, where V] serves as the induction basis. We can take V; to be bounded, upon possibly
choosing a ball around x1. Suppose that V;, has been constructed. Since every point of P is a limit
point of P, we can find an open neighborhood V,,4+1 with bounded Vn+1 such that

L4 _n—i-l g Vn
® In ¢ Vit
o Vo1 NP #{xny1}
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This can be shown as follows. Since x,, is accumulation point for P, V,, has to contain also other
elements of P rather than x, itself. Call this element y. Since V,, is open, y has a ball of radius p
contained in Vj,. Take 0 < r < min{d(z,,y), p}, and set V,,41 = B(y,r). It is clear by construction
that V1 has the first two properties listed above. The third one follows from the fact that P = P/,
and therefore any neighborhood of y must contain some element of P which is not y itself. We can
then call y = z,41 and continue our inductive construction. Put K, := V,, N P. We have that V,,
is closed and bounded in R¥, then V,, is compact for all n. Since z,, ¢ K,+1, no point of P lies in
all K, and therefore NK,, = (). But this is in contrast with Corollary 3.38, since the family { K}
satisfies also all the hypotheses of the corollary. O

Corollary 3.52. FEvery interval [a,b] is uncountable. Therefore, R is uncountable as well.

We now introduce another fundamental notion, akin to compactness. This will allow us to obtain
another important result that is usually not proved in Calculus I courses. This is the intermediate
value theorem.

Definition 3.53. A topological space X is said to be connected if the only subsets of X that are
both open and closed are X and 0.

The following lemma gives a characterization of connectedness.

Lemma 3.54. The following are equivalent:

e X is not connected.
e X is disjoint union of two proper open subsets.
o X is disjoint union of two proper closed subsets.

Proof. Left to the reader as a very useful exercise. O

Theorem 3.55. Let f : X — Y be a continuous function. Then, if X is connected, f(X) is
connected as well.

Proof. Suppose that Z C f(X) is a nonempty subset which is both open and closed. This means
that Z = f(X) N A for some open A, and Z = f(X) N C for some closed C, since f(X) is a
subspace of Y. By continuity, f~'(Z) = f~(A) is open in X, and f~1(Z) = f~1(C) is closed in
X. Therefore, f~(Z) is a set that is both open and closed in the connected X, which means that
f~YZ) = X, and therefore Z = f(X). Since we have showed that any nonempty subset of f(X)
that is both open and closed is f(X) itself, it follows that f(X) is connected. O

Exercise 3.56. Prove Theorem 3.55 using the characterization of Lemma 3.54.
Theorem 3.57. Any interval [a,b] of R is connected (in the Euclidean topology).

Proof. We will prove it for [0, 1], since the same proof works for any choice of a and b. Suppose
that C, D are two nonempty closed subspaces of [0,1] with C' U D = [0,1]. We need to show that
C N D # B, which would complete the proof by Lemma 3.54. Suppose without loss of generality
that 0 € C, and let d := inf(D). Since D is closed, we have that d € D. If d = 0, we have already
found that C N D # (), and we would be done. So, we can assume that d > 0. In this case, set
E =CnNJ0,d]. Since C is closed, and [0,d) C E, it follows that d € E as well, which shows that
d € C and that the intersection C'N D # (). This completes the proof. O

Corollary 3.58 (Intermediate Value Theorem). Let f : [a,b] — R be continuous. Then, for any
value y € [min f, max f], there exists ¢ € [a,b] such that f(c) =y.
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Proof. By Theorem 3.55 and Theorem 3.57 we find that the image of f, f([a,b]) is connected in R.
Suppose that there is a point y that violates the statement of the theorem. This means that y is
not in f([a,b]). Let z = sup f([a,b]) N (—o0,y). We have that [inf f, z] is both open and closed in
f([a, b]) which means that the latter would be disconnected. This is not possible, and the corollary
is proved. ([l

4. SEQUENCES AND SERIES

Definition 4.1. A sequence in a set X is a function f : N — X. Instead of writing f(1), f(2),...
for the elements of a sequence, it is customary to write x1, g, ... where z,, := f(n). When we refer
to a sequence, we also write the whole image of f as {xy, }nen, or simply {x,}, or even just {x,}.

Definition 4.2. Let {z,} be a sequence in a metric space (X, d). Then, we say that {z,} converges
to z € X if for any € > 0, we can find v € N such that d(z,,z) < e whenever n > v. In this case
we write limy,_~ , = z, or lim, z, = z, limz,, = x or simply x,, — x.

Intuitively, the definition of convergence means that eventually (for large n) the elements z,, lie
in any chosen ball around z, no matter how small the ball has been chosen.
From now on, we will discuss sequences only in metric spaces.

Definition 4.3. A sequence in X is said to be bounded if {z,} is bounded as a set.

Theorem 4.4. Let {x,} be a sequence in the metric space X .

(a) {zn} converges to x if and only if for any ball around x, all but finitely many x,, lie in the
ball.

(b) If x, — x and x, — &', then x = z'.

(c) If {zyn} is convergent, then it is bounded.

(d) If E C X and z is an accumulation point of E, then there is a sequence in E which is
convergent to x.

Proof. (a) Suppose that x,, — x. Then, let B(x, p) be a ball of radius p around z. By definition
of convergence, we find v € N such that =, € B(z,p) for all n > v. Then, only finitely many
Zn,wthose ith n < v, can be outside of the ball B(x,p). Viceversa, consider ¢ > 0 and take the
e-ball around = B(x,€). Only finitely many x,, can lie outside of the ball. Say v is the largest index
of the x,, outside of B(z,¢). Clearly, for n > v one has x,, € B(z,€). So, x, — x.

(b) Suppose otherwise. So, x, converges both to x and 2’ with x # 2/. Let p = d(x,2’), and
e = £. Clearly, no element y can be in B(z,€) N B(2’,€). By definition of convergence, we can find
v1 such that z,, € B(z,€) for all n > vq, and similarly v, such that x,, € B(2/,¢€) for all n > . For
n > max{vy, v, } we find that x,, is both in B(x,¢) and B(2’, €) which is a contradiction, since they
have empty intersection. We must have z = 2’.

(c) Let = be such that z,, — z. Then, we can find v such that z,, € B(x,1) for all n > v.
This means that z1,...,x, are the only elements that can possibly be outside B(x,1). Let p' =
max{d(z,z1),...,d(z,z,)}, and set p = max{p’,1}. Then it is clear that z,, € B(x,p) for all n,
and therefore {z,} is bounded.

(d) For each n, let us set B, := B(z,1). Since z is an accumulation point for E, it follows that
we can find z,, € B, for all n, where x,, € E.. Then, given ¢ > 0, we can choose v large enough such
that % < €. Therefore, B, C B(x,€). Since B, 1 C B, by construction, it follows that x,, € B(x,¢€)
for all n > v. This shows that z,, — . O
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We next consider the special case of sequences of complex numbers and study the interaction of
convergence with the algebraic operations over C, where C has the Euclidean metric defined over
R? (this is just the modulus of a complex number).

Theorem 4.5. Let {s,} and {t,} are sequences in C or R with s,, — s and t,, — t. Then:
(a) lims, +t, =s+t.

(b)
(c) hmsn n = st.
(d) hm L =1 in the assumption that s,,s # 0 (for all n).

Proof. We prove only (c) in the complex case, and leave the simple proof of the other statements
to the reader as an exercise.

lim ¢s,, = cs.

For a given choice of € > 0, we can find v; and vy such that |s, — s| < /e for n > vy, and
|tn, — t| < /e for n > vy. For v > max{vy, s}, we find that n > v implies |(s, — s)(tn, — 3)| =
|sn — 8| - |tn, — t| < e. This completes the proof of (¢). The other cases are proved similarly. O

We now consider sequences of vectors in R¥.

Theorem 4.6. Let {x,} be a sequence in R*, where each term x, is written as a k-tuple x, =
(iL'l’n, cee 7xk,n)~ Then:
(a) xp — x = (21,...,2,) if and only if xj, —> xj forall j=1,... k.
(b) Suppose that y,, is another sequence in R* and that 8, is a sequence in R. Assume that
Tp — T,y — y and B, — B. Then we have

lmz,+y, = z+y
limxy, -y, = -y
lim Gz, = px.

Proof. (a) Suppose x,, — x. Since we have |z, —z;| < d(x,, z) by definition of Euclidean metric,
it follows that each x;, converges to x;.

Vice versa, suppose that each limit x;, — x; holds for all j = 1,...,k. Then, for each j =
1,...,k, we can find v; such that |z, —x;| < ﬁ whenever n > v;. Choosing v > max{v1,..., v},
it follows that for each n > v we have

k k
d(wn,z) = | S Jan — 22 < ([ S (-2)2 =
j=1 =

This shows that x,, — x.
(b) is proved either analogously to Theorem 4.5, or applying Theorem 4.5 and part (a) of the
present theorem. It is left as an exercise to the reader. ]

We now introduce an important notion.

Definition 4.7. Let {z,} be a sequence. ELet nj; be a sequence of natural numbers with the
condition that ny < ngy for all k. Then, restricting n to the nj, we obtain a sequence x,, which
is a called a subsequence of x,. Observe that x,, is a sequence obtained by considering only some
elements of x,,, those for which n = ny, for some k. If limy, x,,, — x, we say that x is a subsequential
limit of x,,.

Remark 4.8. z,, — z if and only if x,, — x for every subsequence x,,. The proof of this fact
is left to the reader as a very good exercise.
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Theorem 4.9. The following facts hold.

(a) If {xn} is a sequence in a compact metric space X, then some subsequence of {x,} converges
m X.

(b) Every bounded subsequence in RF contains a convergent subsequence.

Proof. (a) Let E the set of elements of type z,, for some n (i.e. the range of the sequence). If
FE is finite, there is at least one element x which is repeated infinitely many times. So, we can
construct a constant (and therefore convergent) subsequence. Suppose now that E is not finite.
By Theorem 3.41 there is an accumulation point. By Theorem 4.4 part (d), we can construct a
sequence of elements of {z,}, i.e. a subsequence, converging to the accumulation point.

(b) This can be proved as a consequence of (a). In fact, being bounded, we can inscribe the
sequence in a closed ball, which is compact in R¥, as we have previously seen. Then we can use (a)
to find a convergent subsequence. O

Theorem 4.10. The subsequential limits of a sequence {x,} in a metric space X form a closed
subset of X.

Proof. We call E* the set of subsequential limits of {z,}, and we let y be a limit point of E*. We
just need to show that y is also in E*.

We choose an arbitrary element z,,, of {x,,} which is different from y (if this is not possible there
is nothing to prove: why?). We let § := d(y,zy,). We proceed inductively, and assume that we
have found ny,...,n;_1. Since y is a limit point of E*, we can find z € E* with d(x,q) < 27%.
But x € E*, and therefore there is an n; > n;—; such that d(z,zs, ) < 2745, Then, d(y,zn,) <
d(y,x) +d(z,7,,) < 2786 + 271 = 27"+15. We obtain a subsequence {z,, };en Which is convergent
to y, showing that y € E* and completing the proof. O

The following definition is of paramount importance in all analysis and more generally mathe-
matics.

Definition 4.11. Let (X, d) be a metric space and let {x,} be a sequence in X. We say that {z,}
is a Cauchy sequence if for every e > 0 there is an integer v such that d(x,, x,,) < € for all n,n > v.

Definition 4.12. Let E be a nonempty subset of the metric space (X, d). Then, we define
S:={d(z,y) | z,y € E} CRy.

We define the diameter of E to be diamFE = sup .S, which is infinite if the set F is unbounded, and
it is a number if E is bounded.

Exercise 4.13. Show the following two facts.

e diamF is finite if and only if F is bounded.
e Let {x,} be a sequence and let E, consist of all z,, with n > v. Then, {z,} is Cauchy if
and only if lim, diamF, = 0.

Theorem 4.14. The following facts hold.

(1) diamFE = diamFE, where E is the closure of E.
(2) Let K, be a sequence of compact sets in X such that K,11 C K, for all n. Then, if
lim, diamK, =0, (,, K, consists of a single point.

Proof. (1) Since E C E, it follows immediately that diamE < diamE. For fixed € > 0 and given
points E, say x and y, we can find elements of E, 2’ and y/, satisfying d(z,z') = d(y,y’) < e.
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It follows that d(z,y) < d(z,2') + d(2',y') + d(v',x) < 2¢ + d(2',y’) < 2¢ + diamFE. Therefore,
diamFE < 2e 4+ diamF for all € > 0. This means that diamFE < diamF, which completes the proof
of (1).

(2) Let K =(),, Kp, which we know to be nonempty, applying Theorem 3.39. If K is not just a
singleton, then obviously diamK > 0. Since K C K, for all n, it follows that diamK < diamK,, for
all n. It therefore cannot happen that lim, diamK, = 0. This contradiction proves the result. [

Theorem 4.15. The following facts hold.

(1) In a metric space X, any convergent sequence is a Cauchy sequence.
(2) If X is compact, and {x,} is a Cauchy sequence in X, then {x,} converges in X.
(3) In R*, every Cauchy sequence converges.

Proof. (1) Suppose that z,, — z. For fixed € > 0, by definition of sequence we can find v such
that d(z,x,) < § whenever n > v. Therefore, we have that for all n,m > v
d(Tp, Tm) < d(zp,z)+d(z,z)0)
€ €

< — —
2+2

= e
This shows that {z,} is Cauchy.

(2) Let {x,} be Cauchy in the compact X. Using Exercise 4.13, we know that being Cauchy
means that diamFE,, — 0. Using Theorem 4.14 we also find also that diamFE,, — 0. Since closed
subsets of compact spaces are compact, it follows that E, is compact for all n, and we clearly
have that E,, C E,i1 as well. Therefore, using Theorem 4.14 we find that (), E, = {z}. We
want to show now that x is the limit of z,, i.e. =, — z. Let € > 0 be given arbitrarily. Since
diamFE,, — 0, we can find v such that diamFE, < e for all n > v. Since z € E,, for all n, whenever
n > v we have that d(z,z,) < diamFE), < €, which shows convergence of z,, to z.

(3) Let {x,} be a Cauchy sequence in R¥. We can find n such that diamFE, < 1 since the
diameters of the sets F, converge to zero. Then, consider the elements x1,...,x,, and consider
a ball centered at zero whose radius p is larger than d(0,z1),...,d(0,z,) and d(0,z,41) + 1. The
set B(0, p) is closed an bounded, hence compact, and contains the sequence {x,}. Using (2) the
sequence converges in B(0, p), completing the proof. d

Corollary 4.16. In R* we have that a sequence converges if and only if it is a Cauchy sequence.
Exercise 4.17. Prove the corollary, using the theorem that precedes it.
Definition 4.18. A metric space in which every Cauchy sequence converges is said to be complete.

Remark 4.19. As an application of Theorem 4.15, we have that all compact metric spaces and
the Euclidean spaces are complete.

We now focus on sequences of real numbers.

Definition 4.20. A sequence {z,} of real numbers is said to be

e Monotonically increasing if x, < x,41 for all n.

e Monotonically decreaasing is x, > xyn4q for all n.

If the inequalities hold starting from some value v € N, e.g. =, < z,41 for all n > v, then we say
that the sequence is eventually monotonic (increasing or decreasing depending on the inequality).
Sometimes we omit saying eventuallty altogether.
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Theorem 4.21. Suppose {x,} is monotonic. Then, the sequence converges if and only if it is

bounded.

Proof. For the sake of simplicity, we consider the case of monotonically increasing sequences. The
other case is proved following the same procedure and reversing the inequalities.

We first show that if the sequence is bounded, then it converges. Since x,, takes bounded values
in R, there is a finite upper bound y := sup, {z,}. We want to show that y is the limit. For a
choice of € > 0, from the properties of suprema we have that y — € is not an upper bound, and
therefore we can find v € N such that xz, > y — €. Since {z,} is increasing, for all n > v we also
have x,, > y — €. Since y is upper bound, it must also hold that x, <y < y + € for all n. So, for
n > v we have that z,, € (y — €,y + €). Therefore, z,, — y.

The converse was already proved in Theorem 4.4 (c), since we have shown that any convergent
sequence (whether is monotinic or not) is bounded. U

Definition 4.22. Let {z,} be a sequence of real numbers, and suppose that for any choice of
M € R there is an index v such that z,, > M for all n > v. Then we say that {z,} diverges at +o00
and we write z,, — +00.

Similarly, if for any m € R we can find v such that x,, < m whenever n > v we say that {x,}
diverges at —oo and write x,, — —oc.

Definition 4.23. Let {z,} we a sequence of real numbers. Let E denote the subset of elements z
in RY{—o00, +00} such that z,, — = for some subsequence of z,,. This is the set of subsequential
limits with the possible addition of —oco and +oo. Then, we set

e limsupx, :=sup E, and call it the upper limit (or supremum limit).
e liminf x, :=inf E, and call it the lower limit (or infimum limit).

Theorem 4.24. Let {z,} be a sequence of real numbers. Let E be defined as above. Then,
limsup z,, has the following two properties:

(a) limsupz, € E.

(b) If x > limsup x,, there is an integer v such that x,, < x for all n > v.

Moreover, limsup is the only number which satisfies both properties (a) and (b). Similar facts also
hold for liminf.

Proof. (a) The case when lim sup x,, is finite was already proved, since we have shown that the set
of subsequential limits is closed, and that closed sets contain their supremum.

If limsup z,, = 400, then E is not bounded above, which also implies (why?) that z, is not
bounded above. Therefore, we can construct a subsequence z,, such that x,, — 400, so that
+oo € E.

If limsup z,, = —oc then E does not contain any finite element. For any choice of m > 0, only
finitely many x,, can satisfy the property that x, > m. So, x, — —oo0 and —oc0 € E.

(b) Suppose by way of contradiction that the exists a number z such that x,, > z for infinitely
many n. Then, we can construct a subsequence of x, convergent to some y > x > lim sup x,,. Such
y would be an element of E which is larger than limsup z, (the supremum of E by definition).
This contradiction shows that such z cannot exist.

We now prove uniqueness. We proceed again by contradiction. Let p and ¢ be two numbers
satisfying properties (a) and (b) with p < q. We pick z such that p < x < ¢q. Then, by (b) applied
to p we find that there are no infinitely many x,,’s above x. This means that (a) cannot hold for q.
This contradiction completes the proof. ]
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Theorem 4.25. The following limits hold.
(a) If p >0, lim & = 0.

np
(b) If p> 0, then lim /p = 1.
(c) lim ¢/n = 1.
(d) If p> 0 and « is real, then lim(lii:)n =0.
(e) If |x| < 1, then limz™ = 0.
(f)

‘;—g if a=p
=40 if a<p

4+oo if a>p

. agn® + aq_1n* P4+ +ag
im
banP + bg_1nf~1+ .- 4 by

Proof. This is done by direct investigation, using the definition. We will not cover this proof in
detail. g

We will now consider the importnat notion of series. We will focus on series of complex numbers,
unless otherwise stated.

Definition 4.26. Given a sequence {x,}, we will associate to it another sequence, obtained by
summing all elements of x, up to some fixed value:

k
(10) Sp = Z Ty
n=0

For {x,} we also use the symbolic expression ) >~ ,z, to indicate the sum of all the elements x,.
We call such an object series, and the elements s,, partial sums.

If s, is a convergent sequence, i.e. it converges to s, then we set ZZO:() T = s. In this case we
say that the series is convergent. If s, is divergent, we say that the series is divergent.
Remark 4.27. Depending on the definition of x,, and context, we can consider series starting from
o

n=p
natural number larger than 1. In some cases, we will just write >z, when we are not interested

in the first element of the series. After all, the behavior of a series is not affected by few (finitely
many) elements at the beginning of it, and our main question (does it converge or diverege?) does

a different number rather than 0 or 1. So, something like Y > x,, are also allowed, where p is some

not depend on the starting point. Observe, however, that removing some elements from a series
affects the precise value the series converges to.

We have the following criterion of convergence of a series, which is just a reformulation of the
criterion of convergence of sequences we have found before, adapted to the case of series.

Theorem 4.28 (Cauchy Criterion). The series Y xy, converges if and only if for every e > 0 there
s an integer v such that

m
1>l <,
k=n

whenever m > n > v. In particular, if > x,, converges, then limz, = 0.
Proof. This is a consequence of the Cauchy Criterion of convergence of sequences applied to s,. [

Remark 4.29 (Warning). Observe that the first part of the thoerem is an if and only if, while the
second statement is an single implication. So, it is not generally true that if lim z, = 0 the series
converges.
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Theorem 4.30. Let x,, be a series of real nonnegative numbers. Then > x, converges if and only
if the partial sums form a bounded series.

Proof. This follows from the fact that since the elements z,, are positive, the partial sums s,
constitute a monotonically increasing sequence. Then Theorem 4.21 completes the result. (|

The following test for convergence is very useful.

Theorem 4.31 (Comparison Test). (a) Suppose |zn| < yn (real yn) for all n > vy for some
fized natural number vy, and > yy is convergent. Then Y x, is convergent as well.
(b) Let xy, > yn > 0 for all n > vy for some vy. Then, if Yy, diverges, the series > xy,
diverges as well.

Proof. (a) Given € > 0 we can find v € N such that m > n > v implies Y ;" yx < € by the Cauchy
Criterion. Then, we also have

m m

Yol < Yl
k=n k=n
m

< Zyk
k=n

< e

and by the Cauchy Criterion > z,, is also a convergent series.

(b) This follows from (a) because if }_ z,, is convergent, then by (a) > v, is convergent as well,
which is a contradiction. Alternatively, one can argue that lim z,, # 0, which is not possible by the
Cauchy Criterion. O

We will now focus on a fundamental class of series. Namely, the series of nonnegative terms.

Theorem 4.32 (Geometric Series). Let 0 <z < 1. Then

> 1
11 "= .
(11) > =
n=0

If £ > 1 the series diverges.

Proof. The case x > 1 is obvious since lim x™ # 0, so the Cauchy Criterion gives divergence.
When 0 <z < 1, from 1 +2+---+ 2" = (1 —2)"1(1 — 2"*!) we have that
1— zn—‘,—l

n
k
snzg ¥ = —
1—=x
k=0

Taking the limit as n — oo, and considering that " — 0 since 0 < x < 1, we obtain the
result. O

Theorem 4.33. Let x,, be nonnegative and monotonically descreasing. Then the series > . | Tp
converges if and only if the series Y p— 2Fzo1 converges.

Proof. Since this is a sequence of nonnegative terms, it is enough to consider boundedness of partial
sums. We let

Sp=x1+ - Tn

tk=$1+2$2+~--+2k1‘2k.
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For n < 2% we have that

IN

x1+ (xa+x3) + -+ (Tor + - + Tort1_q)
$1+21‘2+"'+2kl‘2k

Sn

IN

ty.
Therefore, s, < t;. Also, if n > 2*, we have

sp > w1+ a2+ (w3 +x4) -+ (Tor-14q + -0+ Tok)

1
> 5371 + a2+ 224+ - 2k_1x2k

= 2 k-

Therefore, 2s, > t.
It follows that the series are either both bounded (and therefore convergent), or both unbounded,
and therefore divergent. The proof is complete. O

Theorem 4.34. The series ) n—l,, converges if p > 1, and diverges if p < 1.

Proof. For p < 0 the series obviously diverges, since the sequence # does not converge to zero. For
p > 0 we can apply Theorem 4.33. So, the convergence of nip is equivalent to the convergence of
the series

k=0

If 2P < 1, ie. if 1 — p < 0, then Z 2 (1-P)k ig a geometric series with z = 2177 < 1, and it is
therefore convergent. If 2177 > 1, i.e. 1 —p > 0 using again the geometric series with = 2177 > 1
we find that the series is divergent. This completes the proof. [l

The following result follows from Theorem 4.33 as well.

Theorem 4.35. The series

[e.e]

1
Z n(lnn)P

n=2

converges when p > 1, and diverges when p < 1.

Proof. The function f(z) = £
consider the convergence/divergence of the series

decreases, and therefore we can use Theorem 4.33. We therefore

Z2k(ln2k)17 N Z k1n2
k=1 k:l

1

This completes the proof using Theorem 4.34. (Il

The previous result, technically speaking, uses the logarithm with base e which we have not yet
defined. Let us now solve this issue.
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Definition 4.36. We define the Napier constant (or also Euler number), written e, as

|
IS
n=0
where the factorial, n!, is defined inductively as 0! =1, n! =n - (n — 1)!, for all n € N.

Exercise 4.37. Show that the series Y ° % converges, and that the definition therefore makes
sense.

Theorem 4.38. We have
1

(12) lim(1+4+ —)" =e.
n

Proof. We set s, = > p_q 7, and t, = (1 4+ 1),
The binomial theorem gives us

b = 3 (M)

q=0 q
n! 1 n 1. -
R T T vy T e At
= 1—1—1—1—%(1—%)4_..._,_%(1_%)(1_%)”_(1_n;l).

It therefore follows that t, < s,, which in turn implies that limsupt, < e (why?).
Suppose now that n > m. Then we have
1 2 m—1

1 1 1
t,>1+1+—(1—— e+ —(1 -1 -=)-- (1=
n= bt +2!( n)+ +m!( n)( n) ( n

),

and letting n — oo, but keeping m fixed, we obtain liminf¢, > 1+ 1+ % 4+ -+ % Therefore,
we have obtained that s,;, < liminf¢,. Taking the limit m — oo we find that e < liminf¢,. So,
e = lim t,,, which completes the proof. O

We now show that e is an irrational number.
Theorem 4.39. The Napier’s constant is irrational.

Proof. We have

1 1
< ! 1+ L— + -]
(n+1)! n+1l (n+4+1)2
1
nln’

where in the last equality we have used the geometric series sum with x = n%rl for the term in
square brackets.

Suppose that e is rational. Then e = % for some p, g € N. Using the above inequality we therefore
have

1
0<qglle—sq) < 7

Clearly, ¢!(e — s4) is an integer, since we assumed that e = %. Since g > 1, we have therefore found
an integer between 0 and 1, which is nonsense. This contradiction completes the proof. ([l
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We now discuss two very important tests for convergence of series.

Theorem 4.40 (Root Test). Given Y x,, define a = limsup ¥/|z,|. Then
(a) If a < 1, >z, converges;
(b) If a > 1, > x, diverges;
(¢) If a« =1 the series can be either divergent or convergent (no information).

Proof. We prove (a) first. If & < 1, we can choose # < 1 such that « < § < 1. In correspondence to
such § we can find an integer v such that whenever n > v, W < B, by Theorem 4.24. Therefore,
for n > v we have |z, | < f". Since < 1, the series ) ™ is convergent (it is a geometric series!),
and >z, converges as well by the comparison thest, i.e. Theorem 4.31.

Next, we prove (b). If @ > 1, again by Theorem 4.24 we hav a subsequence z,, such that
"t/ |xp, | — a. Consequently, |z,| > 1 for infinitely many values of n, which means that z, — 0
cannot hold. The second statement of the Cauchy criterion (Theorem 4.28) gives the divergence of
the series ) zp,.

Lastly, to prove (c), consider the series z% and ) n% In both cases one can see that o = 1.
But from Theorem 4.34 we know that in one case the series diverges, and in the other case it
converges. ]

Theorem 4.41 (Ratio Test). The series Yz is
(a) Convergent, if limsup | =25 < 1;
(b) Divergent, if \x;—:l] > 1 for allmn > v for some v € N.

Proof. We prove (a) first. We can find f < 1 and v € N such that

x 1
|7 < B,

n

for all n > v. Therefore, for any p > 0, we have

lzu] < Blzy
|40 < 5|$u+1‘<ﬁ2‘$1/’

[@oapl < BPlayl.
Therefore, |z,| < B"|z,| for all n > v. The comparison test (with the geometric series) shows
convergence of > x,.
To prove (b), one simply notes that x,, cannot converge to zero because from the inequality it
follows that |z,| > |z,| > 0 for infinitely many terms. note that z, # 0 since otherwise the ratio
Zy41/x, would not be defined, but by assumption it is defined. O

The following result clarifies the relation between the ratio and root tests.

Theorem 4.42. For any sequence {x,} of positive numbers, it holds
(a) liminf x;—:l < liminf /c,.
(b) limsup /7, < limsup "2

Tn
Proof. We prove only (b), and leave (a) to the reader.
We put o = limsup 2L, If o = oo, then there is nothing to prove. So, we can assume that o

Tn
is a finite number. We choose 8 > «, and take an integer v such that n > v implies

Tn+1
ZnT < B,
Tn <8
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Therefore, for any p > 0, we have x,4p+1 < BZ,4p. So, proceeding in a similar way as in the proof
of the ratio test we find that x,4, < Pz, for all p > 0. This inequality can also be rewritten as
Tp < x, 776" for all n > v. Taking n roots of both sides we find

Van < n\/ z,B7Y - 3,

which implies that lim sup {/z,, < 8 (since lim {/z = 1 for all positive numbers x). Since we have
proved that limsup /z, < § for all 5 > «, we find that limsup /x, < «a, which completes the
proof. O

Definition 4.43 (Power series). Given a sequence {¢,} of complex numbers, the series

oo
E cn 2",
n=0

where z is a complex variable, is called a power series. Depending on z, the series might converge or
diverge. On those values of z such that the series is convergent, the power series defines a complex
function.

We will now see that associated to a given series, there is a radius of convergence R, i.e. a
number such that inside the ball B(0, R) the series converges, and it diverges outside of it. In this
case, we also allow R = oo, in which case B(0,00) is set to be the whole complex plane. We also
allow R = 0, and B(0,0) would just be {0}. On the boundary of the ball, i.e. on the circle, the
convergence is not simple to determine, and should be analyzed on a case by case basis.

Theorem 4.44. Given a power series Y. cpz", set a := limsup {/|cy| and R = é (with the
convention that 0 = L and co = gr ). Then, Y cu2™ converges if |z| < R and diverges if |z| > R.

Proof. Setting a,, = ¢,2", we find

limsup ¥/]a,| = limsup {/]cy|- [2"]

= |z|limsup V/|cy|

_ A

R
. By the root test applied to a,, we obtain that the original series is convergent of |z| < R and it
is divergent if |z| > R. O

Definition 4.45. The value R of Theorem 4.44 is called radius of convergence of the power series

> ep2™.

We now investigate a class of series of fundamental importance. Namely, the absolute convergent
series.

Definition 4.46. A series ) a, is said to be absolutely convergent if the series ) |a,| converges.
In this situation we also say that > a, converges absolutely.

Theorem 4.47. If > a, converges absolutely, then it converges.

Proof. We apply the Cauchy criterion. In fact, if > |a,| converges, i.e. > a, converges absolutely,
then we can find v such that for all n,m > v we have | Y ;" |ax|| < e. In correspondence of such
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v 1t also holds

m m
2ol < )l
k=n k=n
m
= > lal]
k=n
< €.
Therefore, Y a, is Cauchy. O

Remark 4.48. While absolute convergence and convergence coincide for a sequence of positive
terms, this is not the case for sequences whose terms are not all positive. For instance, the series

> (_Tll) . converges but does not converge absolutely. In this case we say also that the series converges

nonabsolutely.

Exercise 4.49. Let the sum of two series be defined as Y a, + >_ b, := > _(an + by). Show that if
the series are convergent, say to A and B, then their sum converges to A + B.

Definition 4.50. Given two series Y a, and Y b,, we define their product as »_ ¢, where ¢, =
2 k=0 hbn—k-

Theorem 4.51. Suppose that »_ a, converges absolutely, > a, = A and > b, = B. Then their
product series converges as well. Moreover, Y ¢, = AB, where Y ¢y, is the product series.

5. CONTINUOUS FUNCTIONS
We begin with the definition of limit in metric spaces.

Definition 5.1. Let f : E — Y, where ¥ C X, and Xand Y are metric spaces with matrics dx
and dy, respectively. Assume that p is an accumulation point of E. We define the limit of f(z), as
T goes to p, written

lim f(z) = ¢,

T—p
if for all € > 0, there is a d > 0 such that

dy (f(x),q) <e,

whenever dx(z,p) < d, with x € E and z # p.
Observe that p needs to be an accumulation point, but does not need to be itself a point of F.

Theorem 5.2. Let X,Y, E, f and p be as above. Then,

(13) lim f(2) = q
if and only if for every sequence {x,} C E with x, — p and x,, # p for all n we have
(14) f(wn) —q.

Proof. Suppose first that the limit (13) holds. For a choice of € > 0, we can find § > 0 such that for
all z € E with dx (x,p) < § we have dy (f(x),q) < e. In correspondence to such d, we can find v € N
such that dx(z,,p) < 0 whenever n > v, since x,, — p. Then, for all n > v, dy(f(x,),q) < €.
Since € is arbitrary, we have shown that f(z,) — ¢.

Viceversa, suppose that f(x,) — ¢ whenever x,, — p with x,, # p. By way of contradiction,
we assume that (13) does not hold. Then, we can find an € > 0 such that for each § > 0 we



REAL ANALYSIS 29

can find an x5 € E, with x5 # p and dx(f(zs),q) > €. Define 6,, = % The corresponding x,,

associated to d,, as above, will satisfy the properties that x,, — p, z,, # p for all n, x,, € E, and
dy (f(xn),q) > €. The last fact, in particular, shows that f(z,) — ¢ does not hold, contradicting
(14). This completes the proof. O

We have previously defined continuity as the property of have open preimage of open sets. We
now reformulate this fact in terms of metrics for metric spaces.

Theorem 5.3. Let X and Y be metric spaces. Then, f : X — Y is continuous if and only
if for all open balls B(f(x),€) with f(x) in the image of f, there exists a ball B(x,d) such that

f(B(x,0)) C B(f(x),€).

Proof. This follows from the fact that open sets of metric spaces are those sets that are union of
open balls.

Suppose that f is continuous. Then, since B(f(z),€) is open, the preimage of it f~1(B(f(z),€))
is open as well. Therefore, every point in the preimage is an interior point. In particular, x is an
interior point. This means that we can find a ball B(z,d) C f~Y(B(f(z),¢)). Taking images, we
find f(B(z,9)) C B(f(z),e€).

Viceversa, if V is an open set in Y, let f~1(V) be the preimage of it. We want to show that
any point z € f~1(V) is interior to it. This means that we want to show that we can find a
ball B(x,8) C f~%(V) or, in other words, f(B(x,d)) C V. Since V is open, we can find a ball
B(f(z),e) C V. Choosing d such that f(B(z,d)) C B(f(x),€) therefore completes the proof. [

Definition 5.4. We say that a function is continuous at a point p if for every ¢ > 0 we can find
d > 0 such that dx (z,p) < ¢ implies dy (f(z), f(p)) < e.

Corollary 5.5. f : X — Y is continuos if and only if it is continuous at every point of its
domain.

Proof. Using the reformulation of Theorem 5.3 continuity is the same as being continuous at every
point. ]

Remark 5.6. Observe that while taking limits does not require that the point be part of the

domain (only accumulation point), being continuous does indeed require being part of the domain.
1

Tz

[t ez
f(a:)_{M:O

This, in particular, implies that the function f(x) is continuous. However, the function defined

as

is not continuous.
Question 5.7. What happens if the domain of f has an isolated point?

Theorem 5.8. Let f: X — Y be a continuous function which is injective and surjective, where
X is compact. Then, the inverse function f~1:Y — X is continuous.

Proof. We just need to show that for any open set U C X, (f~1)~1(U) = f(U) is open in Y. This is
equivalent to showing that f(C') is closed in Y for any closed set C' C X, since this is an equivalent
formulation of continuity. If C' is closed in X, then C' is compact. Its image f(C) is the image of a
compact through a continuous map, therefore compact. But compacts in a metric space are closed.
This completes the proof. ]
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Definition 5.9. We say that a map between two metric spaces X and Y is uniformly continuous
if for any € > 0 we can find a § > 0 such that dy (f(x), f(y)) < € whenever dx(z,y) < d.

Remark 5.10. Clearly, the a uniformly continuous function is also continuous. However, a contin-
uous function is not necessarily continuous. The reason for this is that the value ¢ that allows one
to have d(z, y) < e generally depends on the point x considered. If we can choose a ¢ that works for
all x in the domain, a function would be uniformly continuous, but this is not necessarily possible.
Consider for instance the function f(z) = % This is continuous, but not uniformly continuous.

When a function is defined over a compact, uniform continuity and continuity coincide, as the
following result shows.

Theorem 5.11 (Heine-Cantor). Let f : X — Y be a continuous map defined over a compact X .
Then, X is uniformly continuous.

Proof. For an arbitrary choice of € > 0, for any € X we can find 6, > 0 such that dx(z,z) < d,
implies dy (f(z), f(z)) < §, since f is continuous at x for all x € X. Define the balls B(x, %I) It is
clear that X = (J .y B(z, %z), and since X is compact, we can find finitely many points x1,...,z,
such that X = (J;, B(z;, %), where we have set 6; = d5,. We choose

0<d< %min{él,...,én}.

We now show that d defined above satisfies the requirement for uniform continuity. Let x,y € X
satisfy dx(x,y) < d. Since the balls B(z;, Q) cover X, we can find a k, 1 < k < n, such that

2
x € B(xy, %’“) Therefore, dx (z,x;) < %k Moreover, we have

dx(zk,y) < dx(z,x)+dx(z,y)

o O
< k4 Z
- 2 + 2

Or Ok
< E + ?
= 0.

Therefore, by the choice of §i, we have

dy (f(x), f(y)) < dy(f(@), f(zx)) + dy (f(zr), f(y))
<

The proof is complete. U

Definition 5.12. Let f be a function befined on (a,b) C R. Let t € [a,b). Then, we define
f(tt) =qif f(z,) — q for all sequences {x,,} in (¢,b) with x,, —> ¢. Similarly one defines f(¢7).

Remark 5.13. We have that lim,_,; f(x) exists if an only if f(t7) = f(¢+). In this case, f(t7) =
ft+) = limgy f(2).

Definition 5.14. If f is discontinuous at a point ¢, but f(¢7) and f(¢*) both exist, then f is said
to have a discontinuity of the first kind. Otherwise, we say that f has a discontinuity of the second
kind if f is discontinuous at ¢, and at least one between f(¢~) and f(¢t*) does not exist.
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Definition 5.15. Let f be a real function defined on the interval (a,b). Then, we say that f is
monotonically increasing if f(x) < f(y) whenever z < y. If f(x) > f(y) whenever z < y we say
that f is monotonically decreasing.

Theorem 5.16. Let f be a monotonically increasing function on (a,b). Then, f(z) and f(x™)
exist at every point x of (a,b). We have
(15) sup f(t) = f(z7) < f(z) < f(a™) = inf f(2).

te(a,x) te(x,b)

Moreover, if x < y, we have

(16) f@®) < fly).

Similar results hold for a monotonically decreasing function.

Proof. Since f is monotonic, the set of numbers A = {f(t) | t € (a,x)} is bounded above by f(z).
Therefore, it has a supremum. Let us call such number a := sup A. Obviously we have a < f(z).
We need to show that a = f(x~). For e > 0, since a is an upper bound, we can find points of
A between a — € and a. This means that there is a point a < ¢t < x such that a — e < f(t) < a.
Setting § = = — ¢, we have found 6 > 0 such that a — e < f(z — 0) < a. Since f is monotonic, for
all x >t > x — ¢ we have that f(x —0) < f(¢) < a. This implies that f(x~) = a, since if t,, — =z,
with t,, € (a,z), we find that eventually z — 6 < ¢, < z and a — e < f(t,) < a. So, f(t,) — a.
The same reasoning shows that the second half of the chain (15) holds too.

To show the last part of the statement, suppose that x < y. From the first part of the proof,
we have that f(zT) = infye(pp) f(t) = infic(zy) f(t), where the last equality is obtained by the
monotonicity assumption. In a similar way, we have f(y~) = supc(qy) f(t) = SuPeay) f(1)
Then, (16) follows. O

We have therefore obtained the following interesting result showing that monotonic functions are
relatively well behaved.

Corollary 5.17. Monotonic functions have no discontinuities of the second kind.
The following strengthens the results on the good behavior of monotonic functions.

Theorem 5.18. Let f be monotonic on (a,b). Then, the set of points at which f is discontinuous
s at most countable.

Proof. Suppose without loss of generality that f is increasing. Let E be the set of points at which f
is discontinuous. Since each point of E is a discontinuity of the first kind, we can find for each point
x € E a rational number ¢(z) € (f(z7), f(x7)). Since x < y implies f(z™) < f(y~), we obtain
that ¢(z) # q(y). So, E is in 1-1 correpsondence with a subset of Q, and has to be countable. [

Definition 5.19. Let f be a real function defined on [a, b]. For any z € [a, b] define

Af ft) = [
17 —(t) =
(17) OREAUES 2]
where t € (a,b) and t # z. We define, if it exists, the limit
Af
! _ .
f@) =m0

For all those points x such that f’ exists, we say that f is differentiable at z, and we call f’ the

derivative of f. Sometimes we also write, for f'(z), - (f)(z), or %(m), D, (f)(x).
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Remark 5.20. Considering only left or right limits for f/, we obtain the notion of left and right
derivative.

This is a well known result.

Theorem 5.21. Let f be differentiable at x € [a, b], which is the domain of f. Then f is continuous
at x.

Proof. Taking t — = we have

£0) - fw) = LU TD

i (t—z)— fl(z)-0=0.
O

Remark 5.22. The converse is not true. In fact, Weierstrass constructed a function which is
continuous everywhere, but not differentiable anywhere.

Theorem 5.23. Let f and g be defined on [a,b] and suppose that they are differentiable at x € [a, b)].
Then, f+g, fg and 5 (assuming g(x) # 0) are differentiable as well and the derivatives are obtained
as follows.

(a) (f +9)(z) = f'(z) + g'(x).

(b) (Ja)(z) = F'(@)a(x) + g(x) ' (x) (Leibniz rule)
() (£)(z) = 2@l @=g @)
9 g(x)

Proof. The proof of (a) is more or less trivial, and left as an exercise to the reader. To prove (b),
observe that

ft)g(@t) = f(x)g(x) = fF)[g(t) — g(x)] + g(x)[f(t) — f(z)].
Therefore, dividing by (¢t — x) and taking the limit ¢ — x we obtain
LU0 -G @)~ fe)

t—x t—x t—x t—=x
L 0lg) — 9@ + 9@ ) — @)L
t—x t—x
= f@)g'(z) +g()f'(x),

having used the fact that f(¢) — f(x) since f is continuous at = by Theorem 5.21.

To prove (c), we proceed similarly. First, observe that since g is continuous at x and g(x) # 0,
there is a neighborhood of x where g # 0 (why?). So, quotienting by g(¢) also makes sense because
taking the limit ¢ — x we can restrict ourselves in the neighborhood where g # 0. Then, note
that

90 9@ _ 1 f@) = flx) . 9(t) —g(x)
t—x  g(t)g(x) l9( t—=x /(@) t—=x I
The result therefore follows by taking t — x as in (b). O

Example 5.24. Observe that the derivative of any constant function is obviously zero by definition.
Applying the previous result we find that if f(z) = x, then f’(z) = 1. Using the previous result
several times, one finds that for f(x) = 2™ with n € Z (assuming x # 0 when n < 0), one
has f/(x) = na""'. So, polynomial and rational functions are all differentiable (wherever the
denominator does not vanish).
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We now prove the chain rule.

Theorem 5.25. Suppose that [ is continuous on [a,b] and that f'(x) exists at some point x € [a,b].
Let g be defined on some interval I which contains the image of f, and assume that g is differentiable
at f(x). Setting h(t) = go f(t) = g(f(t)), we have that h is differentiable at x and the derivative
1s given by the so called chain rule:

h(z) = g'(f () f'(x)-
Proof. We set y = f(z). By definition of derivative we can write f(t) — f(z) and g(s) — g(y) as
(18) fO) = flz) = (t=2)[f' () +ut)
(19) 9(s) —9(y) = (s=yld' () +v(@)],

where u and v converge to zero as t and s converge to x and y, respectively. We set s = f(t). We
have

h(t) = h(z) = g(f(t)) —g(f())
[£(t) = f(@)]lg' () + v(s)]
= (t=2)[f'(z) +u®)]lg'(y) + v(s)],

where we have used first Equation (19) and then Equation (18).
When t # z, we can devide by ¢ — z and obtain

h(t) — h(x)
MU= (g () + (1 (@) + ()]
Taking the limit ¢ — x, and considering that s — y by continuity of f, we obtain the result. [

Definition 5.26. Let f : X — R, where X is a metric space. Then, we say that f has a local
mazimum at ¢ € X f there exists a § > 0 such that f(z) < f(q) for all z € B(q,0). Similarly one
defines a local minimum.

Theorem 5.27. Let f be defined on [a,b]. If f has a local mazimum at x € (a,b) and f'(x) exists,
then f'(z) = 0. Similar result holds for a local minimum.

Proof. We can find 6 such that the definition of local maximum is satisfied, and such that B(z,d) C

(a,b).
We consider two cases. First, let x — d < t < x, in which case we have

- 1@
t—x -
since both numerator and denominator are negative. Then, taking the limit ¢ — =z, we find
f'(@) = 0.
For the second case, when z < t < x + §, we have
O -1@ _
t—x -

since the numerator is negative, and the denominator is positive. Then, taking the limit t — =,
we find f’(z) < 0. The combination of the two inequalities gives f'(z) = 0. O

Theorem 5.28 (Mean Value Theorem). Let f and g be continuous functions on [a,b], which are
differentiable in (a,b). Then, there is a point x € (a,b) at which

[£(0) = f(a)lg'(x) = [9(b) — g(a)]f'(x).
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Proof. We start by defining the auxiliary function
h(t) = [f(b) — f(a)]g(t) — [9(b) — g(a)]f (1),

for all ¢ € [a,b]. Observe that h is continuous on [a, b] and differentiable on (a,b), just like f and
g. Moreover, h(a) = f(b)g(a) — f(a)g(b) = h(b). Note that if A'(x) = 0 for some x € (a,b), then
the result would follow, since h'(x) = [f(b) — f(a)]¢'(z) — [9(b) — g(a)] f'(x). We will show that this
happens.

If h is the constant function, then there would be nothing to prove, since h'(z) = 0 would be
true for all . Therefore, we can assume that h is not the constant function. Suppose that there
is a point ¢ such that h(t) > h(a) = h(b). Since h is defined over a compact, it has a maximum.
Let x be a point where h attains its maximum. The point x is neither a nor b, since if it was, then
h(t) could not be larger than h(a) and h(b) against our assumption. We then have x € (a,b) and
by Theorem 5.27 it follows that h'(x) = 0. If ¢ is such that h(t) < h(a) = h(b), we can proceed
analogously with the minimum. The theorem is proved. O

As a particular case, we obtain the following (more common) form of the mean value theorem,
which is just the same as above, where g(z) = x.

Theorem 5.29. Let f be real and continuous oveer [a,b], and differentiable over (a,b). Then there
is a point x € (a,b) at which

fb) = fla) = (b—a)f'(2).
Theorem 5.30. Let f be differentiable in (a,b). Then
o If f'(x) >0 for all x € (a,b), f is monotonically increasing.

o If f'(x) =0 for all x € (a,b), then f is constant.
o If f/(x) <0 for all x € (a,b), then f is monotonically decreasing.

Exercise 5.31. Prove Theorem 5.30 using Theorem 5.29.

The following result gives a sort of analogue of the intermediate value theorem for the derivative
of a function.

Theorem 5.32. Let f bea real differentiable function on [a,b]. Let f'(a) < A < f'(b) for some
X € R. Then there is a point x € (a,b) such that f'(x) = . Similarly, the same conclusion holds
when f'(a) > X > f'(b).

Proof. Set g(t) = f(t) — At. Then we have that ¢’(a) < 0, which implies that ¢ is decreasing
around a, and therefore we can find ¢; > a such that g(t1) < g(a). Similarly, ¢’(b) > 0, and we can
find t2 < b such that g(t2) < g(b). We know that ¢g has to attain its minimum in [a, b] since f is
continuous (and therefore g as well) over a compact. From the inequalities for g(t1) and g(t2) we
find that the minimum has to be in (a,b). By Theorem 5.27 ¢’(xz) = 0 at the minimum, implying
that ¢’(x) = f'(x) — A = 0. This completes the proof. O

Corollary 5.33. If f is differentiable on [a,b], then f' does not have any discontinuities of the
first kind on [a,b).

Proof. First, observe that by definition, a diascontinuity of the first kind can only happen in (a, b).
Then, suppose by way of contradiction that the point x € (a,b) is a discontinuity of the first kind.
Let ™ := f/(z7) and [T := f'(z 7). Without loss of generality let [~ < IT. We can choose ¢ > 0 such
that [~ + € < IT —e. By definition of left and right limit, we can find ¢ such that for z —§ < z < x
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we have |f/(z) — 17| < €, and for x < 2z < z + & we have |f/(z) — 7| < e. Then, in the interval
[z —¢',x+¢'] where &' < &, we see that any value [~ +¢ < A < [T — ¢ is not attained by f’, against
the result of Theorem 5.32. O

Definition 5.34. Let f be a function defined on F C R, such that for each interval (a,+00), we
have (a,+00) N E # (. Then, we say that lim,_, . f(z) = 400 if for any M € R we can find v € R
such that for all x > v it holds f(x) > M. We say that lim,_, 1 f(x) = L if for all € > 0 we can
find 4 > 0 such that for all x > v we have |f(z) — L| < e. Similar definitions can be posed for
T — —00.

Theorem 5.35 (de L’Hopital’s rule). Let f and g be differentiable in (a,b), with ¢'(x) # 0 for all
x € (a,b) where —o0o < a < b < 400. Suppose that

!
(20) im 28 _

z—a g’(m)

and either of the following holds:
(21) f(x),g(x) — 0,
(22) gx) — oo,

asx —> a. Then, lim,_,, % = L. Similar statements also hold when x — b, or when g(z) — —oo.

Proof. First, assume that —oco < L < 400. We choose a number ¢ such that L < g and we pick r

such that L < r < ¢q. Equation 20 implies that we can find ¢ € (a, b) such that g :Eg < r whenever
a<x<c Fora<ax<y<e, by Theorem 5.28 we find ¢ € (x,y) such that

o f@) ~ fw) _ 10

9(x) —g(y) g
. Then, if condition (22) holds we can take z — a and get % <r<gqgforalla<y<e If
condition (22) holds, we can keep y fixed and take a point ¢; € (a,y) wuch that g(x) > g(y) (the
limit goes to +00) and g(z) > 0 for all a < = < ¢; (the limit goes to +00). Then, multiplying
Equation (23) by L_g(y) we get

<r

9(=z
f(z) 9() , f)
24 == 4 =
2 a@) =" e )
whenever ¢ < & < ¢;. Taking the limit as * — a we find % < q eventually, say for a < x < ca.

So, we can find some value ¢* such that whenever a < x < ¢* we have % < ¢ with any choice of

q > L. Similarly, we can show that whenever —oo < L < 400 and chosen any p such that p < L,
f(z)

we can find some ¢* such that a < x < ¢* gives NORE4 The two results prove the theorem. [

Definition 5.36. If f is differentiable on [a,b], and f’ is itself differentiable, we can take the
derivative of f’ and call it second derivative, also denoted by f”(x) or %( f) or D%(f) and so on.
If the result is differentiable, one can continue applying this procedure and take further derivatives.
We denote them by £ and similar symbols as above.

Theorem 5.37 (Taylor’s Theorem). Let f be a real function on [a,b], and let n be a natural
number. Suppose that f"~Y is continuous on [a,b], and that f™(t) exists at all t € (a,b). Let
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a, B be in [a,b] with o # B, and define the quantity

n—1 (k) a
(25) P(t):zf ( )(t—a)k.

(26) F(8) = P(8) + T2 (8 — a)",

Proof. We define M as M := %, which is well defined since 8 # a. We define also the

auxiliary function

g(t) = f(t) = P(t) = M(t — )",

for t € [a,b]. Observe that g™ = f(") _ nIM, since P has only powers up to n — 1 and therefore
has vanishing n'* derivative. If we find a point z in (a, 8) such that g™ (z) = 0, we would have at
such a point that £ (z) = n!M, which would complete the proof.

Observe that by construction we have that P®*)(a) = f#)(a) for all k = 0,1, ...,n—1. Therefore,
g®(a)=0forallk =0,1,...n—1, where the 0 derivative just represents g with no differentiation
at all. By the choice of M, it also holds that ¢g(5) = 0. Applying the Mean Value Theorem 5.29,
there must be a point between « and 3, say 1, such that ¢’(x1) = 0. Then, we can apply again
Theorem 5.29 to a and 1, since ¢'(«) = ¢'(x1) = 0, finding some x9 € (o, x1) where ¢’ (xz2) = 0. So
proceeding, we find for each &k = 0,1,...,n some z such that g(k) (zg) = 0. In particular, x =
is the value we were looking for at which g(™ (z) = 0. This completes the proof. O

6. RIEMANN-STIELTJES INTEGRAL

We begin this section with a definition.

Definition 6.1. Let [a,b] be an interval. A partition P of [a,b] is a finite collection of points
xo, ..., Ty, such that

a=x9 <11 < <xp1 <y =0
Given a partition P, we write Ax; = x; —x;—1 foralli=1,...,n.

Suppose f is a bounded real function defined on a closed interval [a, b]. For example a continuous
function would be bounded, but we do not require such strong assumptions. For an arbitrary
partition P of [a, b] we define

M; = sup f(x)
[25—1,24]

m; = inf f(z)
[xiflﬂvi]

U f) = ZMiAﬂﬁi
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Additionally, we define the sets U(f) := {U(P, f) | P C [a, b] is a partition} and L(f) :={L(P, f)| P C
[a, b] is a partition}. Lastly, we define

b

(27) /fdx = infU(f),
b

(28) /fdx = supL(f),.

We call T: fdx upper Riemann integral, and fab fdx lower Riemann integral. Osberve that since f is
assumed to be bounded, the sets U(f) and L(f) are both bounded above and below, and therefore
the upper and lower Riemann integrals are finite numbers.

Definition 6.2. Let f be a bounded function such that

(29) /abfda: = / ’ fdz.

Then f is said to be Riemann integrable, and we define its Riemann integral over [a,b] to be

f; f(z)dx := f; fdx = f; fdx. If f is Riemann integrable, we also write f € R, having denoted by
R the collection of Riemann integrable functions.

We now consider a generalization of the notion of Riemann integrability, and Riemann integral.

Definition 6.3. Let o be a monotonically increasing function on [a, b]. In particular, « is bounded
since for all z we have a(a) < a(z) < a(b) by monotonicity. Given a partition P of [a, b], we define

Aa; = o) — azi—1).
Observe that when « is just the identity map, we recover Ax; as defined above.
Suppose f is a bounded real function defined on a closed interval [a, b]. For example a continuous

function would be bounded, but we do not require such strong assumptions. For an arbitrary
partition P of [a,b] we define

U(P,f,Oé) = ZMZAQZ
=1

L(P, f,a) = ZmiAai.
i=1

Additionally, we define the sets U(f,«) := {U(P, f,a) | P C |a,b] is a partition} and L(f,«) :=
{L(P, f,a) | P C [a,b] is a partition}. Lastly, we define

b
(30) /fda = infU(f, ),

b
(31) fda = sup L(f,«),.

Ja

Definition 6.4. When f;fdoz = f;fdoz we say that f is Riemann-Stieltjes integrable with respect

to «, and we set f; fda = f;fda = fabfda, which we call the Riemann-Stieltjes integral of f over
[a,b]. If f is Riemann-Stieltjes integrable, we also write f € R(«), having denoted by R(«) the set
of Riemann-Stieltjes integrable functions with respect to «.
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Definition 6.5. Given two partitions of [a,b], P and P*, we say that P* is a refinement of

P if P* D P. Given two partitions P; and P, we say that P* is their common refinement if
P*=P JP.

Theorem 6.6. Let P* be a refinement of P. Then, we have
(32) L(P, f,a) < L(P" f,«)
(33) UP*, f,0) < U(P,fa).

Proof. We will prove (32), as the proof of (33) is substantially the same.

It is clear that if we prove the result for P* consisting of only an extra point with respect to P,
the result would hold for any refinement, since we can apply the procedure multiple times until we
find the inequality for P and an arbitrary refinement P*.

So, suppose that P* is obtained from P by adding one extra point z*, which we assume to
satisfy ;1 < 2% < z;. Let wy 1= infocp, | o+ f(2) and w2 1= sup,cppe 5,1 f(2). It is clear that if
m; = infoepp, | 2 f(7), we have w1, ws > m;. Then, we compute

i—2 n
L(P*, f,a) — L(P, f,a) = ijAOéj + wy (") — a(zi—1)) + wa(a(z;) — a(z™)) + ijAaj
j=1 J=t

1—2

— ijAOéj - mi(a(ﬂfz‘) - 04(1’1'71)) - ijAaj

j=1

(a(zi) — a(z®)) — ms(a(@:) — azi-1))
wi(a(z”) — a(zi-1)) + wa(o(@;) — afz”))
—mi(o(x;) — a(z”) + a(z™) — a(zi-1))
(w1 — my)|e(a”) — a(@i—1)] + (w2 — ms)[a(z) — az”)]
0.

= wi(a(z") — a(xi—1)) +ws

v

The proof is complete. O
Theorem 6.7. f;fda < T;fda.

Proof. Let P, and P, be arbitrarry partitions. Let P* = P;|J P2 be their common refinement.
Then, applying Theorem 6.6 we find that

L(Pl,f,Oé) SL(P*vaa) SU(P*hfaO[) SU(PQ,f,O[),

where the central inequality holds because the lower sum of a partition is always smaller than the
upper sum for the same partition by definition. It follows that

L(thaa) < U(P27f?a)7
for any P; and P,. Therefore, we also have that

b
/ fda = sup L(Py, f. < U(Ps, f, ),
Ja_ Py

which in turn implies that

b b
/Gfda < ngfU(Pg,f, a) = /a fda.
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The following result gives us a directly applicable criterion to determine whether a function is
integrable or not. We will use it several times in the rest of the course.

Theorem 6.8. We have that f € R(a) if and only if for every € > 0 there exists a partition P
such that

(34) U(P,f,()é)—L(P,f,OZ)<€-
Proof. ( <= ) For every partition P, by definition and Theorem 6.7, we have that

L(P, f,a) < /bfda S/bfdag U(P, f,a).

a a

Therefore, if P is such that (34) holds, we have that

i b
OS/fda—/fda<e.

Since this can be done for every € > 0, we obtain that @fdoz —intd fda = 0 and therefore
f € R(a). -

(=) For a given € > 0, by definition of infimum and supremum, we have that we can find two
partitions P, and P» that satisfy

b
U(Pnfia) < [ fdas

b
/ fda < L(Py, f,a)+ %
a
Let P = P;|J P> be their common refinement, then we obtain the inequalities

U(P,f,Oé) < U(P27f7a)

b €
< /fda+2

< L(Pl,f,a) +e
< L(P, f,a)+e.

This completes the proof, as the partition P is the one we were looking for. O

Theorem 6.9. The following facts hold.

(a) If (34) holds for some P and € > 0, then it also holds for the same € for all refinements of
P.
(b) If (34) holds for P ={xq,...,zn} and if s;,t; are arbitrary elements in [z;_1,x;], then

D 1f(si) = f(t)] Ay < e.
i=1
(c) If f € R() and the hypotheses of (b) hold, then

n b
|Z ft)Aa; — / fda| < e.
i=1 a
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Proof. (a) follows directly from Theorem 6.6. To prove (b), one just needs to notice that f(s;), f(t;) €
[mg, M;] for all i = 1,...,n, and therefore |f(s;) — f(t;)| < M; —m;. Then, one gets

Z\f t)|Acy

n

S Z:[]Mz — mi]AOéi
=1
= Z MlAOél — Z miAozi
i=1 i=1
= U(P,f,a)—L(P,f,a)
< €.

To prove (c), observe that the following inequalities follow directly from the definition
L(P, f,a) < 32 f(ti)Ac; < U(P, f, )
L(P,f,a) < [Pfda < U(P,f,a).
Then, | >0 f(ti)Aa; — f fda| <U(P, f,a) — L(P, f,a) < €, which completes the proof. O

The following result gives our first relatively large class of functions that Riemann-Stieltjes
integrable.

Theorem 6.10. If f is continuous on [a,b], then f € R(«).

Proof. The idea of the proof is to use the criterion of Theorem 6.8 to show that f is integrable. To
this purpose, let € > 0 be given and fixed. Choose n > 0 such that na(b) — a(a) < e. Since f is
continuous over a compact, it is uniformly continuous by the Heie-Cantor Theorem. It follows that
we can find § > 0 such that whenever |z —y| < § (z,y € [a,b]) it follows that |f(x) — f(y)| < n.
Let us choose a partition P such that Ax; < §. Then, by uniform continuity we have that for each
[€i—1,x;] we have M; —m; <. As a consequence we have

n

U(Pafva) - L(P7faa) = Z[Mz _mi]Aai

i=1

< 7 z”: AN
=1

= na(b) — ala)]
< €

This completes the proof. O

Theorem 6.11. Let f be monotonic on |a,b], and let o be continuous on [a,b] (in addition to being
monotonic). Then f € R(«).

Proof. Let € > 0 be fixed. Let n € N be arbitrarily chosen. We set g = a and z,, = b. Since «
is continuous, by the intermediate value theorem we can find a point =1 € (a,b) = (zo,x,) such
that a(x1) = a(zg) + M. Then, applying again the intermediate value theorem, we can find
a(b)—a(a) q . G
—————. So proceeding, we find x1,...,%,1
a(b)—a(a) a( )

a point x9 € (x1,x,) such that a(z2) = a(xy) +

with the property that for all ¢ = 1,...,n we have Aq; = . This gives us a partition
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P = {xg,z1,...,2,} of [a,b]. Suppose, without loss of generality, that f is increasing. Then, in
each interval [x;_1,z;] we have M; = f(x;) and m; = f(x;,—1). We obtain

P, f0)— L(P.fra) = SN p )

" i=1
a(b) — ala)
= D),
Since n is arbitrary, we can choose n large enough such that M[f(b) — f(a)] < ¢, and the
proof is complete. O

Theorem 6.12. Suppose that f is bounded on [a,b], and has a finite set of points of discontinuity
in la,b]. Suppose that « is continuous at all points where f is not continuous. Then f € R(a).

Proof. Let € > 0 be fixed. We define M = supgciqy |f(2)]- Let E = {e1,...,eq} be the set of
points of discontinuity of f. Since « is continuous at each point, we can find intervals [u;, v;] such
that |a(t) — a(e;)| < § for each t € [u;,v;] N [a,b], and e; € (u,v;). Therefore, in particular, we
have that a(v;) — a(u;) = |a(v;) — a(w)] < Ja(v) — ale)| + |ale;) — alu;)] < e.

We put K = [a, b] — [, (ui, v;)]. Since J;(ui, v;) is open, we have that K is a closed set inside the
compact [a, b], and it is therefore compact as well. Since the points of discontinuity of f are inside
the sets (u;,v;), it follows that f is continuous over K, and it is therefore uniformly continuous
by the Heine-Cantor Theorem. We can therefore find § > 0 such that |f(s) — f(¢)| < € whenever
s,t € K and |s —t| < 6.

Let P be a partition constructed as follows. Each point u; and v; is part of the partition, but no
partition point fall inside (u;,v;). The other points are taken in K in such a way that Az; < ¢ for
all j.

We can therefore subdivide the sum for U(P, f,a) — L(P, f,«) in terms corresponding to those
j’s such that x;_1 = u; for some 7, and those j’s corresponding to points that are not u;’s, for any
of the 7’s. We define

A = {j|xzj-1 =u; for some i},
B = {j|zj_1#u foralli}.

Observe that by definition of M we have that |f(s) — f(¢)| < 2M for all ¢, s € [a, b], while for j € B
we have that M; —m; <e. When j € A we have by construction that Aa; < e. Then we find

U(P,f,a) = L(P, f,a) = > [Mj—mj]Aa;+ > [M; —my]Aa;

jeA jEeB
S EZ[M]' —mj] +EZAO(J'
jeA jeB

IN

€[2M + a(b) — a(a)].

Since € is arbitrary, we can choose it in such a way to make the whole product as small as we want.
This completes the proof. ]

Theorem 6.13. Suppose that f € R(a) on [a,b], with m < f(x) < M for all x € [a,b] and ¢
continuous on [m, M]. Set h(x) = ¢ o f(x). Then, h € R(«).

Proof. Let € > 0 be fixed. Since ¢ is uniformly continuous on [m, M| we can find § > 0 such that
|p(s) — d(t)| < € whenever |s —t| < §. Additionally, we can assume § < € too, upon possibly taking
a smaller § than the one found by definition of uniform continuity.
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Since f € R(«), we can find a partition P of [a, b] such that
U(Pvfaa) —L(P,f,Oé) < 52'

We take M;,m; to be supremum and infimum of f on each interval [x;_1,z;] determined by the
partition, and we let M, m} indicate their counterparts for h. We divide the numbers ¢ =1,...,n
in two classes. We set i € A if M; — m; < 6, while we set 1 € B if M; —m; > 6.

When ¢ € A, by the choice of § and the definition of M}, m;, we find that M — m] =
SUPtefe, 1 ,0i) F(t) = i0ficie, 2y F()] < € When i € B, we have M —m; < 28up,cy, ar |0(2)]- By
the choice of partition we have

i€B i€EB
< Z(MZ — mZ)Aaz
=1
= U(P,f,a)—L(P,f,a)
< &

from whichwe deduce )", 5 Aa; < 0. We therefore obtain

n

U(P,h,a) = L(Ph,a) = > (M —mj)Ao

=1
= > (M7 —mi)Aa; + Y (M —m})Aa;
i€cB i€B
< eAq; +2K Z A
i€B

< €la(d) — ala)] +2K§
< €la(b) — a(a) + 2K].

Since € was arbitrary and a(b) — a(a) 4+ 2K is a constant independent of the partition P chosen,
we can make €[a(b) — a(a) + 2K] arbitrarily small and the proof is complete. O

The following result, proof of which is left to the reader, lists some useful properties of the
Riemann-Stieltjies integral.

Theorem 6.14. The following facts hold.
(1) If f1, fo € R(«), then f1 + fa,cfi € R(a), where ¢ € R is arbitrary. Moreover,

/ab(fl + f2)da = /abflda+/ab fada

b b
/ cfrda = c/ fida.

(2) If fi(z) < fa(x) for all x € [a,b], where f1, fo € R(), then

/a ' fuda < / ' foda

and
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(3) If f € R(«) and ¢ € (a,b), then

/abfda:/acfdaJr/cbfda.

(4) If f € R(e) and |f(z)| < M for all x € [a,b], then

\/bfda| < M(b—a).

(5) If f € R(ev1) and f € R(aw), then f € R(aay + bag) for any a,b € R, and

/abfd(oq—i-ag):a/abfdal—i—b/abfdag.

Exercise 6.15. Prove Theorem 6.14.

Theorem 6.16. If f,g € R(«) then

(1) fg € R(a).
(2) |f] € R(a) and | [} fda| < [7|flda.

Proof. To prove the first statement, consider the function ¢(t) = 2, which is continuous. If ¢(z) is
an integrable function, then h(z) = ¢(z)? is integrable by Theorem 6.13, being the composition of
q and ¢. So, the functions (f + g)? and (f — g)? are integrable since ¢ = f + g and ¢ = f — g are
integrable (linear combinations of integrable functions). Since we have

fg =117 +9) ~ (f ~ 9]

we obtain that fg is integrable as well.

To prove the second part, observe that |f(z)| = (¢ o f)(x), where ¢(t) = |t| is continuous. Then,
again by Theorem 6.13 we find that |f(z)| is integrable. Lastly, we can choose ¢ = £1 such that
[ fda = c [ fda, depending on the sign of [ fda. Then, one has

[ fdal = ¢ [ taa

IN
—
=
Y
L

where we have used the fact that cf(x) < |f(z)| for all , along with Theorem 6.14. O

Definition 6.17. The unit step function [ is defined as

Ie) = {0 z<0

1 z>0.

Theorem 6.18. Leta < s < b and f € R(a) on [a,b], with f continuous at s and a(x) = I(z —s).
Then, we have

/a ’ fdo = fs)
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Proof. We consider a family of partitions P, = {a, s, z, b}, where a, b, s are fixed, and we let x take
arbitrary values between s and b. Observe that for any ¢ < s, one has a(t) = I(t — s) = 0, while
for any t > s one has a(t) = I(t —s) = 1.

For the upper sum we compute, for any arbitrary b > x > s:

U(Pe, fye) = Ma(s) - a(a)] + Ma[a(z) — a(s)] + Mala(b) — a()]
= M;[0—0] + Mz[1 — 0] + M3[1 — 1]
= M.

Similarly, one has L(P,, f,a) = ma. As x — s we have My, my — f(s) by continuity of f at s.
Therefore, f: fda = f(s) as stated. O

of distinct points in (a,b). Set a(x) = > 0" cpl(x — sp). Let f be continuous on [a,b]. Then

Theorem 6.19. Suppose that ¢, > 0, for n € N, is such that Y ¢, converges, and s, is a sequence

b ()
[ gda =" cutton)
a n=1

Proof. Since for all z € [a,b] c,I(x — sp) < ¢, we find that (comparison test) for any choice
of x, the series defining «(x) converges, so that « is a well defined function. Moreover, since
I(t1) < I(tg) for all ¢; < to, and ¢, I(z — s,) > 0 for all n, it follows that a(x) is a monotonic
function. Additionally, a(a) = 0 and «(b) = >, ¢, which means that a is bounded. Therefore,
we can define the Riemann-Stieltjies integral with respect to a.

Let € > 0 be given, and choose N such that } >° \ . ¢, < €, which has to exist because ) ¢, is
convergent. For all z, define

N
(@) = D eallw—sn),
n=1

as(x) = Z enl(x — sp).

n=N+1

Therefore one has a(z) = a1 () +az(z). Applying Theorem 6.14 and Theorem 6.18, it immediately
follows that

b N
/fdal = chf(sn)'

n=1

Now, observe that as(b) — az(a) = > 27 v ; cn — 0 < €, which gives us

|/abfda2|

IN

b
M/ dOéQ
a

Me,

IN
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where we have set M := sup,¢q) |f(2)[, which is finite since | f(z)] is a continuous function over a
compact. Putting these all together we find that

b N b N
[ rda =S eatl = | [ fdar+an) = Y enf(sn)
a n=1 @ n=1
b b N
= | fda + fda - Cnf(sn)‘
[ dene [ gaoa =3

b
_ |/ Fda|
Me

Therefore, we have that f; fdoao =522 cnf(sn) = 0 by taking the limit N — +o0. O

Exercise 6.20. Show that given € > 0, the series ) ¢, as in the proof of the previous theorem has
to admit an N such that Y 7 41 ¢n < € (Hint: Think of the Cauchy criterion of convergence)

In the following, recall that we call R the set of Riemann integrable functions, which is the same
as the Riemann-Stieltjes integrable functions with respect to a(x) := z.

Theorem 6.21. Let o be a monotonically increasing function such that o € R. Let f be a bounded
real function on [a,b]. Then f € R(«a) if and only if fo/ € R. Moreover, in that case we have

/a b fda = / ’ f(2)d (z)da.

Proof. Let € > 0 be fixed, and by applying the integrability criterion to o’ take a partition P =
{z0,...,2n} of [a,b] such that U(P,o/) — L(P,a’) < e. By the Mean Value Theorem, for each
i=1,...,n, we find points ¢; in each interval [x;_1, z;] such that

Aai = O/(ti)A(Ei.

For s; € [x;—1,x;] we have

3
3

D o/ (si) = ()| Az < (M;(a') — mi(a))Az;
: —

= U(P,d)—L(P )

< €,

Ti
I\
<
i

where we have used M;(a’) and m;(a/) to indicate the supremum and infimum, respectively, of o
in [z;-1,7;]. Let M = supy,y) f. From Aa; = o/ (t;) Az, we have

Zf(si)Ao/ = Zf(si)a/(ti>A$i.
=1

i=1
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It therefore follows that

|Zf 51 Aaz Zf Sz Al‘z| = |zn:f Sz sz Zf 51 Sz sz|

n

= Z|f (si)[e (i) — o/ (si)] A

IN

MZ]@ ) — o (s;)|Ax;

< Me.

Therefore, we obtain that

> f(si)Aa; < U(P, fo!) + Me,
i=1
for any choice of points s;. Therefore, we obtain that
(35) UP,f,a) < U(P fa!)+ Me.
The same reasoning also shows that
(36) U(P, fo!) < U(P, f,a)+ Me.

Combining them, we have |U(P, fa') — U(P, f,a)| < Me. Since if P is replaced by a refinement
the inequality will still hold (since both (35) and (36) still hold true), we find that

|/fda—/f z)dz| < Me.

Since € is arbltrary and the upper integrals do not depend on the choice of it, we obtain that

f fda = f f(x)d/(x)dz. For the lower integrals one can follow the same procedure. This completes
the proof, since applylng the integrability criterion for f with respect to « is the same as applying
the integrability criterion for fo’ for the Riemann integral. g

We now proceed to show the change of variable rule.

Theorem 6.22. Suppose ¢ is a strictly increasing continuous function that maps [A, B] onto [a, b].
Suppose that « is a monotonically increasing function on [a,b] and let f € R(a). Define the
functions

(37) Bly) = a(e(y))
(38) 9(y) = flo()).
Then, g € R(8) and [V gdp = [* fda.

Proof. Observe that any partition P = {x,...,x,} of [a,b] induces a partition @ = {yo,...,yn}
of [A, B], where each y; is chosen in such a way that ¢(y;) = z;, where such y; exists since ¢
is onto. Notice that @ is a partition because ¢ is strictly monotonic, so yg < y1 < -+ < Yn.
Moreover, all partitions of [A, B] are obtained in this way, since we can take x; = ¢(y;) for any
partition @ = {vo,...,yn} and obtain a partition P which admits @ as its induced partitions.
This construction gives us a bijective correspondence ® : P([a,b]) — P([A, B]) between the class
of partitions of [a,b], and that of the partitions of [A, B], as ®(P) = @ (and therefore such that
P = ®71(Q). In the rest of this proof, P and @ are related through the correspondence ® just
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described. Moreover, by definition of g, we have the equality of sets f([x;—1,x;]) = g([yi-1,v:]). It
follows that

U(@.9,8) = U(P )
L(Q7g?/8) = L(P7f7a)'

Since f € R(a), given € > 0 we can find P such that L(P, f,a) — U(P, f,a) <e. Therefore, also

L(Q,q9,8) —U(Q,g,8) < e and g € R(B). In addition, we also have that fffdoz = ffgdﬁ, both
being the suprema over P and @, respectively, of the sets U(P, f,«) and U(Q, g, 3). Similarly,
fabfda = ffgdﬁ. It follows that ff gdpB = f: fdao. O

We now consider the relation between integration and differentiation.

Theorem 6.23. Let f € R on [a,b]. For every x € [a,b] define

Fla) = / " Ftyr.

Then, F' is uniformly continuous (and therefore continuous) over [a,b]. Moreover, if f is continuous
at xg € [a,b], then F is differentiable at xo and F'(xo) = f(z0).

Proof. By assumption, f is bounded, since R is defined as a subset of bounded functions. Suppose
that |f(t)| < M for all t € [a,b]. Consider z,y such that a < x < y < b. Then, we have

rﬂw—ﬂmwzw/ﬁmﬁ—/ﬁww

=\l?@ﬁ+é@@ﬁ—é3mw
— 1 [ e
M(y — )

<

So, for any chosen € > 0, whenever y € (z — 57,2 + 57) it follows that |F(y) — F(x)| < e. This
means that F' is continuous at z for any x € [a,b]. In addition, the value 0 = §; does not depend
on z, but only on €. The function F' is therefore uniformly continuous.

Assume now that xg is a point of continuity for f. Fix € > 0, and from the fact that f(t) — f(xo)
as t — xg, choose § > 0 such that

[f(@) = flzo)| < e
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whenever |t —zo| < 6, with ¢ € [a,b]. For s,t € [a,b] with 29 —0 < s <29 <t < x+ ¢ we have that

FOZFE)  play)

_ ’F(t) —F(S) - f(x())(t_s)’

t—s t—s
_ PO -F() fif(wwdu‘
N t—s t—s

t
= = IFO - F) = [ )
=l [ sdu= [ s
— [ fdus / fwdu— [ fadu— [ )
- = S| [0~ steo
t—s «(t—s)
This shows that F’'(xg) = f(x¢), which completes the proof. O

We are now proving the following result, which as its name suggest, is quite important.

Theorem 6.24 (Fundamental Theorem of Calculus). If f € R on [a,b] and if f = F' on [a,b] for
some differentiable function F, then

b
/f(a:)dx = F(b) — F(a).

Proof. Let € > 0 be given. Let P = {xy,...,x,} be a partition of [a, b] such that U(P, f)—L(P, f) <
€, whose existence is guaranteed by the fact that f € R. For each subinterval [z;_1, z;] by the Mean
Value Theorem we can find points ¢; such that F(x;) — F(xz;_1) = F'(t;)Ax;. Therefore, we have

Ejf )Az; = }:fﬂ )Az;
= ZF(:BZ) — F(x;—1)
=1

= F(b) — F(a).
Applying Theorem 6.9 (c), we find that

b n b
F(b) — F(a) - / faydal = |3 f(t) A — / f(z)dz
a i=1 a

€.

IN

Since the inequality holds for all € > 0, while F(b) — F'(a) and ff f(z)dz are independent of it, it
follows that [* f(z)de = F(b) — F(a). O

The following result is very useful in practice for computations.
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Theorem 6.25 (Integration by Parts). Suppose that F' and G are differentiable functions over
[a,b], such that F' = f € R and G' = g € R. Then,

b b
/ Fla)g(z)ds = FO)G) — F(a)G(a) — / ()G (x)da.

Proof. Since F and G are differentiable, it follows that they are continuous and therefore integrable.
We set H(z) = F(x)G(x). Since H = F'G + FG' = fG + Fgy, it follows that H € R, because
F,G, f,g all are in R. Applying Theorem 6.24 to H' we find that

b
/ H'(x)dz = H(b)— H(a).
From H' = F'G + FG' = fG + Fg we therefore find
b b b
[ t@6@us+ [ Fag@ds = [17@6w@ + Falg@)ds

/b
I:(;(b) — H(a)
— F(b)G(b) — F(a)G(a).

H'(z)dx

This completes the proof. O

Let fi,...,fn be n real valued functions defined on [a,b]. Define f = (fi1,...,fn). Then,
f : [a,b] — R™. In this situation, if « is a monotonic bounded function, we can define ff fda =
(f: fida, ..., f: fnda), whenever each f; € R(a) in which case we say that f € R(«).

Exercise 6.26. State and prove the Fundamental Theorem of Calculus for vector functions.

Most of the results studied thus far immediately translate to analogous results in the vector
valued setup, mutatis mutandis. We consider a result that presents some differences with respect
to the case of n = 1.

Theorem 6.27. Let f € R(«a). Then also ||f|| € R(a), and

b b
|| / fdal| < / 1/ ]lda.

where ||(y1, ..., yn)|| = V¥i + -+ y2 is the Buclidean norm of R™.

Proof. Let fi,..., fn be the components of f. Since f € R(«), we have that f; € R(a) for all
i =1,...,n. Moreover, from previous results we know that f? € R(a), as well as Y, f? € R(a).
Since the function h(t) = v/t is continuous. Then, by Theorem 6.13 it follows that | f|| € R(c). We
now need to prove the inequality. Let y := (y1,...,yn) where y; := f(f fida foralli=1,... n. By
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definition, we have y = ff fda. Then we have

Iyl = > v
= Su /abfida
-y /ab<yz~fz->da
- /ab<2yifi>da.

By the Cauchy-Schwarz inequality >, y; fi(t) < ||ly||||f(¢)|| for all t € [a,b]. Therefore, Theorem 6.14
shows that

b
P = [ whoda

b
/ Iyl lda
b
Iyl / 1 lldar,

which completes the proof. ([l

IA

Definition 6.28. A continuous function v : [a,b] — R* is called a curve. Moreover, if v is
one-to-one, then it is called an arc, while if v(a) = ~(b) it is called a closed curve or a loop.

Remark 6.29. Different curves might have the same associated set of points in R¥ (i.e. the image
of the curves). This is because curves are functions, rather than just sets of points. Our definition
entails not only the path, but also some parametrization of it according to some parameter € [a.b]
which we can think of as being time.

We define now, for a given v, a correspondence A, : P([a,b]) — R} from the class of partitions
on [a,b] to the nonnegative real numbers defined as follows. For a partition P = {zg,...,x,} of
[a, 0]

A(P) = Y Iv(a) = (ic)]-
i=1

The number A, (P) is therefore the length of a polygonal curve obtained by selecting n points on the
curve . The selected points, {v(x;)} are the vertices of the polygon. The idea is that such length
is just an approximation to the actual length of the curve v, and therefore as our partition becomes
finer and finer we obtain approximations of increased accuracy. According to this reasoning, the
following seems an intuitively meaningful definition.

Definition 6.30. Let « be a curve. Then, we set the length of +, which we indicate by the symbol
A(v) as A(7) == suppep(ap)) My (P). If A(y) < +o00, we say that v is a rectifieble curve.

We prove now that when a curve is continuously differentiable, we can calculate the length of ~
by performing a Riemann integral.
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Theorem 6.31. Let v be a curve which is differentiable and such that v is continuous. Then, ~y

is recifiable, and
b
[ I

Proof. Given a partition P = {xy,...,x,}, we have that

(@) — (@)l = | / (1)t

[ ol

IN

where we have used the Fundamental Theorem of Calculus for vector functions and Theorem 6.27.
It follows that A,(P) < f II7/(t)||dt. Thefore, the supremum as P varies among all partition
is also bounded by f II7/(t)||dt, and therefore the curve ~ is recifiable. So, we have found that
A(P) < f I/ (t)]|dt. By Showmg the converse inequality we complete the proof.

Let € > 0 be given. Since 7/ is continuous over a compact, it is uniformly continuous. There
exists, therefore, a § > 0 such that

17'(s) =¥l <e,

whenever |s —t| < 6. Let P = {zo,...,2,} be a partition of [a,b] where Az; < ¢ for all 7.
Then, by taking s = x; in the previous inequality we obtain that ||/(¢)|| < ||/ (x:)]| + €, whenever
t € [zi—1,x;). Therefore, we have

/ 1~/ (t) || dt g/ Hv’(mi)\|dt+/ edt
Ti—1 Ti—1 Ti—1
= |V (zi)|Az; + eAx;
= H/ )+ 7/ (z))dt]| + eAz;
< H/ dt\+|!/ (z:) — 7 ()] dt|| + eAx;

< ly(@s) = y(wiz1)|| + 2eAa;.

Adding all the terms for i = 1,...,n together we obtain

b
/ W ®ldt < Ay(P)+2(b—a)
< A(v) +2€(b — a).

Since € > 0 was arbitrary, it follows that

b
/ WOld < A,

which completes the proof. [l

7. SEQUENCES AND SERIES OF FUNCTIONS

We consider now sequences of functions and introduce and discuss their convergence. This is a
fundamental problem in all analysis and its applications.
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Definition 7.1. Let {f,} be a sequence of real or complex functions defined on a set E. Suppose
that f,(x) is a convergent numerical sequence for all x € E. Then, one can define a function
obtained by setting f(x) := lim,, f,(x). In this stuation we say that f is the limit function, and we
also say that convergence happens pointwise. Similarly, if the series ), fn(x) is convergent for all
x, then we can define a function obtained by setting f(z) := ), f(z) for all z € E. The function
so obtained is called the sum of f,.

The definition of convergence and sum raises the question of whether this is a “good” definition,
in the sense that we are interested in knowing whether it has some interesting properties. For
instance, one immediate problem one might ask is whether if all functions f,, are continuous, f is
continuous as well when it is defined as the limit or the sum of {f,}. In general, this is not true,
as the following exercise shows.

Exercise 7.2. Let f,(x) = ﬁ Show that the function f(z) = ), fn(x) is well defined for
all z, and show that the function f is not continuous at « = 0.

In general, the limit function is not continuous, the sum is not continuous, the integral of the
limit does not coincide with the limit of the integrals and so on. In other words, this definition is
not really well behaved. This brings us to the following stronger definition.

Definition 7.3. We say that a sequence of functions {f,} converges uniformly on E to a function
f if for every e > 0 there exists an integer v such that for any n > v

[ful(z) = f(2)] <,
for all z € E. We say that the series ) f, converges uniformly if the sequence of partial sums

convergence uniformly.

Observe that the fundamental difference with our original definition (pointwise) is that while
such v exists for each x, but might depend on xz when convergence is pointwise, in the case of
uniform convergence v is independent of z. We have a Cauchy criterion for uniform convergence.

Theorem 7.4. The sequence of functions {f,} converges uniformly on E if and only if for every
€ > 0 there exists an integer v such that for all n,m > v we have

(39) |fn(2) — fm(2)] <,
forallx € E.
Proof. Suppose that {f,} converges uniformly to f. Then, given ¢ > 0, we can find v such that

|fn(z) — f(x)| < § whenever n > v, for all z € E. It follows that if n,m > v, then for all z € £ we
have

[fu(@) = fi(2)] < |fu(@) = f(2)] + | f(2) = fin(2)]
< €.
Conversely, if 39 holds, from the Cauchy criterion for numerical sequences we find that for all z €
the sequence f,(z) converges to some value, which we call f(x) the limit. Then, we have defined

a function f to which f,, converges pointwise. We need to show that the convergence is uniform.
Fixed € > 0 arbitrary, we find v such that 39:

[fn(@) = fm(2)] < €
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Then, by taking the limit n — +oo.

[fu(z) = f@)] <
which is equivalent to the condition for uniform convergence. O

Exercise 7.5. Show the following. Suppose that lim, f,(x) = (x) for all x € E. Then, set
M, = sup,cp|fn(x) — f(z)|. Then, f, converges uniformly to f if and only if M, — 0 for
n — +00.

Theorem 7.6. Suppose {f,} is a sequence of functions defined on E such that

[fn(x)] < My,
for allx € E and alln € N. Then ), fn converges uniformly if - M, converges.

Proof. Showing that ) f, is uniformly convergent accounts to showing that the sequence of partial
sums »_,_; fx is uniformly convergent. Applying Cauchy criterion for the uniform convergence to
the partial sums, we need to find for every € > 0 a v such that n,m > v implies

n m

1> @) = > fa@)] < e

for all z € E. Then, since ), M, is a convergent numerical series, we have (by the Cauchy criterion
for series of numbers) that we can find v such that n,m > v implies | Y, M| < e. Then, for
n >m > v we have

1> @) =Y fa@)] = | ful)]
q=1 k=m

k=1
n
< 1) My
k=m
n
= 2 M
k=m
< €.
This completes the proof. O

Theorem 7.7. Let {f,} be a sequence of continuous functions uniformly convergent on E to f.
Then f is continuous.

Proof. To prove continuity of f, we need to show that for every z € E’, given € > 0, we can find a
§ > 0 such that |f(t) — f(z)| < e for all |t — x| < §. Then, let us fix x € E’ arbitrary, and take an
€ > 0. Since f, converges uniformly to f, we can find v such that whenever n > v we have

€

o) = FE) <
for all z € E. Moreover, for fixed n > v, since f, is continuous, we can find § > 0 such that

|fn(t)_fn(x)’ < gu
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whenever |t — x| < . Then, with such choice of n and d, whenever |t — 2| < ¢ holds we find

[f@) = f@)] = [f(t) = fa(t) + fu(t) = fa() + fu(2) — f(2)]
(

< @) = fa@] + 1 fn@) = fu(@)] 4 [ fo(z) — f(2)]
€ € €
< — — —
3 + 3 + 3
= e
This shows continuity of f at x. Since x was arbitrary, it follows that f is continuous. O

We consider now a case when pointwise convergence can be strengthened to uniform convergence.

Theorem 7.8. Let K be compact. Suppose that {fn} is a sequence of continuous functions con-
verging to a continuous function f pointwise. Suppose that fni1(x) < fn(z) for allm € N and all
x € K. Then f, converges to f uniformly.

Proof. We define the sequence g, = |fn, — f| = fn — f and show that g,, converges to 0 uniformly,
where 0 here means the constant function with value zero (uniform convergence is a property that
refers to functions!). Observe that we can remove the absolute value beacause f, is a decreasing
sequence, so fn(x) > f(x) for each . We have that g, — 0 pointwise (again zero here is the zero
function), and g, > gn+1 by assumption on f, and f. Let ¢ > 0 be given. Let K, be the set of
x € K such that g, > €. Since g, is continuous, K, is closed since it is the preimage of a closed set
under a continuous map. From Theorem 3.37 we have that K, is compact. Since g,(x) > gnt1, it
follows that K, 11 C K, since if © € K1 then g,(x) > g,t1(x) > € shows that x € K,, as well.

Observe that if we can show that K,, = () for some n, then we would complete the proof, since
it would follow that g,(z) < € for all z € K, which implies uniform convergence as follows: Using
gn+1(x) < gn(x), for all m > n we would have that g,, < g,(z) < € as well.

Suppose by way of contradiction that K, # ( for all n € N. Notice that since K, +; C Kp,
any finite collection of nonempty sets K, has nontrivial intersection. Therefore, {K,} satisfies
the hypotheses of Theorem 3.39, which gives us (K, # (. Fix z € K. Since g,(z) — 0, it
follows that g, (x) < € for m large enough, and therefore such z is not in K,,, which also implies
x ¢ () Kp. This reasoning can be applied to each x € K, which shows that () K, is the empty
set. This contradiction shows that one of the K, must be the empty set. As observed above, this
completes the proof. O

Definition 7.9. Let X be a metric space, and let C(X) denote the set of all real (or complex)

valued functions which are continuous and bounded on X. We define a norm on f, which is given
by

If1| = sup | f(2)]-
zeX

Exercise 7.10. Show the following properties of || f||:

Il >0, and || f|| = 0 if and only if f(z) =0 for all x € X.

If k € R (or C), we have that ||kf] = |k||| f]]-

It holds: |1£ + bl < [If] + [

By defining d(f,h) := ||f — g|| we introduce a metric over C(X).

A sequence {f,} converges to f in C(X) if and only if f, converges uniformly to f.

Theorem 7.11. The space C(X) with the metric d defined above is a complete metric space.
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Proof. Let {f,} be a Cauchy sequence in C(X). Then, this means that for all ¢ > 0 there exists
v € N such that for n,m > v implies ||f, — fm|| < €. Since convergence in the norm is the same
as uniform convergence by Exercise 7.10, Theorem 7.4 shows that there exists a function f to
which {f,} converges uniformly. Since each f,, is continuous (because all elements of €(X) are so)
Theorem 7.7 shows that f is continuous as well. To complete the proof, we need to show that f is
also bounded, which would imply that f € C(X). it is clear that f is bounded since we can find

(by convergence of {f,} to f) a natural number n such that ||f — f,(x)|| < 1, which implies by
definition of || e || that |f(z) — fn(z)| < 1 for all x € X. O

We now consider the relation between uniform convergence and integrability.

Theorem 7.12. Let o be monotonically increasing on [a,b]. Suppose f, € R(a) for alln € N, and
fn — [ uniformly. Then f € R(«). Moreover, we have

b b
/fda = lim/ fndau.

In particular this means that the limit on the right hand side exists.

Proof. We define €, := sup,¢(q) |fn(2) — f(2)|. It follows that for all z € [a, b] we have f,(z)—e, <
f(z) < fu(x) + €,. These inequalities imply that for each n € N we have

(40) / ’ fdor — enla(b) — afa)) = / (o — en)da < /b fda
(41) < /abfda < /ab(fn + ep)da = /ab fda + ep(a(b) — ala)).

We therefore obtain:

b b
(42) 0< / fda—/ fda < 2e,(a(b) — a(a)).

Since f, converges to f, €, — 0 as n — 400. Therefore, ff fda — f: fda can be made smaller

than any € > 0. This means that Tffda = fffda, and therefore f € R(«). Applying again (40)
we find that o

| / * fuda - / "fdo| < en(alb)  afa).

As €, — 0, we see that f; fdo = lim,, ff fnda as stated. O
In particular we obtain the following.

Corollary 7.13. If f, € R(a) and if f(x) = > o2 fu(x) where the series converges uniformly over
[a,b], we have that f € R(«) and

/abfda = i/abfnda.

We will now consider the relation between uniform convergence and differentiation.
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Theorem 7.14. Suppose that {f,} is a sequence of differentiable functions on [a,b] such that
{f(x0)} converging for some xy. Suppose that {f)} converges uniformly on [a,b]. Then, {fn}
converges uniformly on [a,b] to a function f, and

@) = lm f@).
for all x € [a,b].

Proof. Let € > 0 be given. For v € N large enough, we have that n, m > v implies
€
Falo) = fmleo)] < 5,
and
€
2(b—a)’
for all t € [a,b]. We now apply the Mean Value Theorem to the function f, — fp,. This gives us
that for any pair of points z,t € [a,b] we can find ¢ € (z,t) such that

[ (8) = [ ()]

(43) (@) = fn(@) = fu(t) + fn (D] = [z =t fn(c) = fu()]
< g
< 5
-2

whenever n,m > v. It follows that

[fu(x) = fm(@)| < [fu(2) = fm(@) = fu(zo) + fim(2o)| + [ fn(20) = fin(x0)]
<
= e
for all x € [a, b], from which we deduce that f,, converges uniformly on [a,b]. Let f be the function

to which f,, converges. We need to show that f/(z) = lim,, f},(z) for all . Let x € [a,b] be fixed
and arbitrary. We define for ¢ # z and t € [a, b]

fa(t) = fu(z)

W) = T
and
f(t) — fx)
o) = SO
Then, we have
(44) lm () = fi(a),
by definition. From 43 we have
€
(45) 60(0) = u(0] < g

which shows uniform convergence of ¢,, for ¢t # x. Since {f,} converges to {f}, we obtain that
¢n(t) — ¢(t) uniformly, for all ¢ # x. By Theorem 7.7, we obtain that lim;_,, lim, o fn(t) =
limy, 00 limy—y5 fn (). So, applying this result to ¢, along with (44) and (45) completes the proof.

O

Theorem 7.15. There exists a real continuous function that is nowhere differentiable.
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Proof. We define ¢(x) = |z| for x € [—1,1], and extend its definition to whole R by requiring the
periodicity condition ¢(z + 2) = ¢(z). By definition, for all s, € R we have |¢(s) — ¢(t)| < |s —¢].
This also implies that ¢ is continuous. Define now
— 3
x) = —)"p(4™x).

fo) = Lo
Since ¢ is bounded by 1, we have that (3)"¢(4"z) < (3)". The geometric series 3°(2)" is convergent,
and we can therefore apply Theorem 7.6 to determine that ZZOZO(%)"qb(ZI"a:) converges uniformly
to f. Moreover, since each term in the series is continuous, and the convergence is uniform, it
follows that f is continuous by Theorem 7.7.

Let now z be fixed, and let m be an integer. Define &,, as follows. If [4™z,4™x + 1] does not
contain any integer, set &, = %4_7". If (4mx — %,4’”1‘) does not contain any integer, then set
Om = —%4*7”. Observe that exactly one of the two options holds true for each m, since the size of
the interval (4™x — %, 4 + %] has size 1, and it therefore contains exactly one integer which will
lie in one of the two cases. Define

_ (4" (x4 6m)) — o(4"x)
Yn = 5 .

If n > m, it follows that 4™(z + 6,,) differs from 4"z by a multiple of 2, and therefore, by the
periodicity of ¢ we have that 7, = 0. When n < m, we can apply the inequality |¢(s)—¢(t)| < [s—t]
to determine that |v,| < 4™. Observe also that |v,,| = 4™. We then have

f@+om)— f@), =3
| 5 | = |nz_%<4> o
= 120
n=0
m—1
3m_23n
n=0

1
= (3" +1).
SG™+1)

Y

This shows that f is not differentiable at x, and since x was arbitrary, it completes the proof. [

Definition 7.16. Let {f,} be a family of functions defined on some set E. We say that {f,} is
pointwise bounded if there is a function ¢ : E — R™ such that

[fu(z)] < o(x),

for all x € F and all n € N. We say that {f,} is uniformly bounded if in the previous situation
¢(x) = M for some number M. In other words, if it holds

lfa(@)] < M,
for all z € E and n € N.

Two natural questions related to boundedness of sequences of functions regard convergence of
subsequences. One might ask whether any sequence admits a pointwise converging subsequence.
In addition, one might also ask whether a converging sequence admits a uniformly convergent
subsequence. The following result will prove useful.
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Theorem 7.17. If {f,} is a pointwise bounded sequence of functions on a countable set E, then
{fn} admits a subsequence {fy,,} such that fy, (x) converges for all z € E.

Proof. Since E is countable, we can arrange the elements of E in a sequence E = {x1,x2,...}.
Since fp(x1) is bounded by hypothesis, we can find a convergent subsequence f,, (x1) which we

denote for ease of notation fy, (1) = fix(x1). Moreover, we put S; := f1 . We now construct
a sequence of sets 5, inductively. The base of induction is already given by S; contructed above.
Assume that S, = {fn1,..., fam,...} is constructed for some n. Since the initial sequence {f,}

is bounded pointwise, we have that f, (2n41) is bounded as & — oo (and n is kept fixed).
Then, we can extrapolate a convergent subsequence which we denote by f,+1k(2n41). Then we
set Sp+1 = {fut1,1,-- s fat1k,---}. Moreover, given fy, 41,1, there are only finitely many functions
in S, that could correspond to functions f, ; in S, that were on the left of f,417 in S,. We
remove them. For f,412 we perform the same procedure and continue in this way for all f, 41
so that we prune down S, 11 to a subsequence of functions were the order of the functions did
not change between S, and Sp11, and still f,41 x(2n41) is still a convergent subsequence. By
induction, we construct S,, for all n € N. The sequence of sets {S,} so constructed satisfies the
following properties.

(1) Sp+1 is a subsequence of S, for al n € N.

(2) For each n € N we have that {f, x(xn)} is convergent as k — oo.

(3) In passing from S,, to Sp11 the order of the functions is not changed.
Let us now consider the “diagonal” sequence S = {f,n}. By property (3), we have that only
finitely many values of n can exist such that f, , is not in one of the S,,. By property (2), it follows
that for any z; € E, the sequence fy, ,(x;) is convergent. This completes the proof. O

Both questions asked before, however, turn out to have negative answers for more general sets
E (i.e. uncountable). We therefore need some stronger condition on boundedness of sequences of
functions.

Definition 7.18. A family F of real (or complex) valued functions defined on a subset E of a
metric space X is said to be equicontinuous if for every € > 0 there exists a § > 0 such that

fl@) = fw)l < &
for all z,y € F with d(z,y) < § and for all f € F.

Remark 7.19. Observe that if F is an equicontinuous family of functions and f € &F, then f
is uniformly continuous. So, uniform continuity says that ¢ does not depend on x and y, and
equicontinuity says that in addition to that, § does not even depend on which f € F is taken.

The following result shows a case in which equicontinuous families naturally arise.

Theorem 7.20. Let K be a compact in a metric space, and let {f,} C C(K) be a uniformly
convergent sequence. Then {fn} is equicontinuous.

Proof. Let € > 0 be given. From uniform convergence and Cauchy criterion, we have that for all
n,m > v, for some v € N, it holds

o= fmll < €

Fori=1,...,v+1, f; is a continuous function on a compact, and therefore uniformly continuous.
We can therefore find a §; > 0 such that

filz) = fily) < e
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whenever d(z,y) < ;. Upon choosing ¢ < min{d;} we find that |f;(z) — fi(y) < € holds for all
i=1,...,v+ 1 whenever d(z,y) < ¢. For n > v and d(z,y) < 0 we have

[fn(@) = fa)] < [fa(@) = o1 (@) + [forr(@) = o1 ()] + [fo1(y) — fu(y)]

< 3e.

So, for all n € N, we have that |f,(x) — fn(y)| < 3¢ whenever d(z,y) < 0. This completes the
proof. O

Exercise 7.21. Let K be compact in a metric space. Show that there is a countable E which is
dense in K.

Theorem 7.22 (Ascoli-Arzeld). Let K be compact, and f, € C(X) be an equicontinuous sequence
of pointwise bounded functions. Then,

(i) {fn} is uniformly bounded on K;
(ii) {fn} contains a uniformly convergent subsequence.

Proof. We prove first that {f,} is uniformly bounded on K. Using equicontinuity for {f,}, given
€ > 0 we can find § > 0 such that

|fn($)_fn(y)| < €

for all n € N, whenever d(z,y) < 6. We can cover K with finitely many balls B(z;,d), centered at
x; € K, with ¢ = 1,...,k, since K is compact. Since {f,} is pointwise bounded, we can find M;,
for each i = 1,...,k, such that

[ful@i)] < M

for all n € N. Let us choose M > max;{M;}. Then, for x € K, we can find z; such that d(z, z;) < 9,
from which we obtain that |f,(z) — fn(x;) < €, and therefore |f,(z) < M + € for all n € N. Since
x was arbitrary, this completes the proof of (i).

We now prove (ii). Be Exercise 7.21, we can find a countable set E dense in K. Applying
Theorem 7.17, we can find a subsequence {f,, } such that {f,, (x)} converges for each z € E. To
get rid of the double index, we define a sequence g, := f,,. By proving that g; converges uniformly,
we complete the proof of (ii). Let € > 0 be given, and choose § > 0 as in the proof of (i). Since
E is dense in K, we can cover K by balls B(z,d) where x € E. Due to compactness of K, we can
extract a finite subcovering B(z,,d), with » = 1,...,s. By construction of g;, we have that there
exists v € N such that

|gi(zr) — gj(zr)| < ¢

for all 4,7 > v and all r = 1,...,s. For an arbitrary « € K, there exists r such that = € B(x,,J),
and therefore

l9i(x) — gi(zr)| < €

for all 7 € N. Then we have

l9i(x) —gj ()] < |gi(x) = gi(wr)| + 1gi(xr) — gj(xr)| + |gj(2r) — gj(2)]
< 3e,

whenever ¢, j > v. This shows uniform convergence, and completes the proof. ([l
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Theorem 7.23 (Weierstrass). Let f be a real or complex continuous function on [a,b]. Then there
exists a sequence of polynomials P, such that

lim Pp(z) = f(z),
uniformly on [a,b]. When f is real, P,, may be taken to be real.

Proof. The two cases are substantially the same, so we will just consider the real case. Since the
interval [a, b] can be transformed affinely into [0, 1], we can assume that [a,b] = [0,1]. Moreover,
we can assume that f(0) = f(1) = 0, since if this is not the case, we can consider the function

g(x) = f(z)—f(0) —=z[f(1) — £(0)]

satisfies the property that ¢g(0) = g(1) = 0, and if we find P, that converges to g uniformly on

[0,1], then f(x) = g(z)+ f(0) + x[f(1) — f(0)] is the unoform limit of the sequence of polynomials
P, (z) = Py(x) + f(0) + x[f(1) — f(O)] We extend f to the whole R by setting f(x) = 0 for all
x € R—10,1]. Since f(0) = f(1) = 0, it follows that f so defined is uniformly continuous over the
whole R. Set

Qu(z) = cu(1—a?)",
for n € N, where ¢, is given by ¢, = L We have

f71 Qn(z)dz

/11(1—J:2)"dx = 2/01(1—1;2)%5

N
/ﬁ(l — 2?)"dx
0

>
2
> /ﬁ(l — na?)dx
0
_ 4
 3yn
1
>

Nk
where in the first inequality we have used the fact that @Q,(z) = (1 — 2?)" is even and we can
therefore calculate the integral on half of the domain, then we used the fact that the integral of
a nonnegative function is monotonic with respect to the size of the interval (so, smaller interval
makes the integral smaller), and for the third inequality we have used the fact that the function
h(z) = (1 —2%)™ — (1 — na?) has nonnegative derivative on [0, ﬁ] and satisfies h(0) =0 (therefore
it grows from zero, and therefore it is positive in the given interval). Since fil(l — 2?)"dx >
by definition of ¢, it follows that ¢, < /n.

For any given 0 > 0, by definition of Q),,(x), we have that for all = such that § < |z| < 1, the
inequality

\/7)

Qu(z) < Vn(l—zH"

Since the right hand side converges to zero, as n goes to +oo, we find that @, (x) — 0 uniformly

n [—1,—0] UIJ, 1].
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We define P, ( f f(z+1t)Qu(t)dt. Since f is zero outside the interval [0, 1], it follows that
flx+t)=0 When t ¢ [—x,1 — z]. Therefore, we find that

1—x
Pu(x) = / F( + 1)Qu(t)dt

1
= /f(s)Qn(s—x)ds
0

where in the last line we have used the change of variable s = x + ¢ to transform the integral. The
last integral is indeed a polynomial in z, since x appears inside @), which is a polynomial, and the
variable s is integrated over. By uniform continuity of f, given §, we can find § > 0 such that

f@) - fw)l < 3.

whenever |z —y| < . Put M = sup,cg |f(z)|. The latter is finite because |f| has a supremum on
[0, 1] being continuous over a compact, and we have extended f by giving it value zero outside of
[0,1]. Then, we have

Paa) — f(z)] = |/ @+ 0Qu(t)dt - f /@n )dz|

= | / e+ = F@lQua

IN

1
/ lF(a+0) = F)Qu)i
1
= [ U+ - a0

-1
0

-5
- / 1+ ) = @IQu(t)dr + / 1+ ) =~ F@IQut)at

1
+ [ 140 - f@@ub
)
-5 1
< 2M/ \/ﬁ(1—52)"dt+;+2M/ Vn(l — §%)"dt
—1 é

< AMVR(1- 8"+ 2
which can uniformly be made smaller than e for a choice of n large enough (since \/n(1—§2)" — 0).
This completes the proof. ]

Corollary 7.24. For every interval [—a,al, there is a sequence of real polynomials P, such that
P,(0) =0 for all n, and P, — |x| uniformly.

Proof. Since f(z) = |x| is continuous on any interval [—a,a], Theorem 7.23 gives that there is a
sequence of polynomials P which converges to f uniformly. Therefore, we have that P;(0) — 0.
Setting P, (z) := P}(z) — P,(0) gives the result, since P,(0) = 0, and lim,, P,(z) = lim,[P}(x) —
P,(0)] = lim,, P¥(xz) = f(x), where the convergence is uniform. O

Definition 7.25. Let A be a vector space over R. Then, A is said to be an algebra if the following
conditions are satisfied.

e There is an associative operation - : A x A — A.
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e Right and lef distributivity with respect to + hold: (zr+y)-z=z-z4+y-zand z-(y+2) =
x-y+ax-z forall z,y,z € A
e Compatibility with scalars holds: (ax) - (by) = (ab)(z - y), where a,b € R and z,y € A.

Lemma 7.26. The set of real valued functions over E C R is an algebra.
Exercise 7.27. Prove Lemma 7.26.

Definition 7.28. In general, when we have a vector space of functions which is closed under
multiplication, we will say that this is an algebra of functions.

Exercise 7.29. Show that the set of polynomials is an algebra of functions. Does the same hold
true for the set of polynomials of degree less than or equal to n?

Definition 7.30. Let A be an algebra of real functions over E. If for any sequence of functions
{fn} C A which converges uniformly to f on E it follows that f € A, then A is called a uniformly
closed algebra.

Given an algebra of functions A, let B be the set of functions consisting of uniform limits of
sequences in A. Then B is called the uniform closure of A.

Theorem 7.31. Let B be the uniform closure of an algebra A of bounded functions. Then, B is
uniformly closed.

Proof. The proof is left to the reader as an exercise. g

Definition 7.32. Let A be a family of functions on a set E. Then, A is said to separate points on
E if for every pair of points x1,x2 € F, we can find a function f € A such that f(x1) # f(z2).

Moreover, if for each z € E we can find an element g € A such that g(x) # 0, we say that A
vanishes at no point of E.

Theorem 7.33. Let A be an algebra of functions which separates points in E, and vanishes at no
point of E. Suppose x1,19 € E are distinct, and let c1 and co be constants. Then, A contains a
function f such that f(x1) = c1 and f(x2) = ca.

Proof. By assumption, we can find a function g such that g(x1) # g(x2) (since A separates points),
and we can find functions h and k such that h(x1) # 0 and g(z2) # 0 (since A vanishes at no
point). Define now

u = gk—g(x)k,
v = gh—g(xz)h.

Since A is an algebra, u,v € A as well. Moreover, u(z1) = v(z2) = 0, and u(z2) # 0 and v(z1) # 0.

It follows that

c1v cou
= +

is the function we wanted to construct. O

We now proceed to proving the main result of this section, which is a generalization of Weierstrass’
Thoerem 7.23

Theorem 7.34 (Stone-Weierstrass). Let A be an algebra of real continuous functions on a compact
K. Suppose that A separates points on K and vanishes at no point of K. Then, the uniform closure
B of A consists of all continuous functions on K. Therefore, A is dense in C(K).
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Proof. The proof will consists of four steps.

Step 1. We shall prove that if f € B, then |f| € B as well. To this purpose, let M :=
sup,cx | f(x)]. Observe that since B is the uniform closure of A, there exists a sequence of con-
tinuous functions in A which converges uniformly to f. Since each function in the sequence is
continuous, and therefore it is bounded because K is compact, we have that f is also bounded, and
therefore M is not infinite. Now, let € > 0 be given. By Corollary 7.24, there exists a sequence of
polynomials uniformly convergent to the function |z| on [—M, M]. Then, in correspondence of the
given € > 0 we can find a polynomial P(y) = Zf:o a;y’ such that

|P(y) — lyll < e

for all y € [-M, M]. We now consider the function g(x) = Zf:o a;f(x)?, which is obtained from P
by replacing y = f(x). Then, we have that for all z € K, f(x) € [-M, M] and

lg(z) = [f(@)]| < e

Moreover, since B is an algebra, it follows that g(z) = Zf:o a;f(x)" is in B as well, since it is
obtained by using only algebra operations (linear combinations and products of algebra elements).
This shows that |f| is in the uniform closure of B. However, since B is uniformly closed, it follows
that |f| is in B as well, completing the first step.

Step 2. For f, g functions, we define the new functions

max(f, g)(x) = {f(ff?) f(@) 2 g(@)g(x) g(x) = f(x),
and
min(f, g)(z) := {f(ﬂﬂ) f(@) < g(@)g(x) g(z) < f().

We want to prove that if f,g € B, then max(f,g), min(f,g) € B. This follows directly by the
following facs:

max(f. )@y — L FI@) @) —g@)]

2 2
. _ f@) +g@)  [f(z)—g(x)
Hlln(f, g) (l’) - 9 2 ’
and an application of Step 1. Then, following the same process one can show that given fi,..., fn

functinos in B, we have that max(fi,..., fn), min(f1,..., fn) € B.
Step 3. We want to prove that given a real continuous function f on K, and given a point x € K,
we can find a function g, € B such that g,(x) = f(x) and

g2(t) > [f(t) — €,

for allt € K. Observe that A satisfies the hypotheses of Theorem 7.33. Then, for each y € K we can
find a function h, € A C B such that hy(xz) = f(x) and hy(y) = f(y). Since h, is continuous (any
function in A is) we can find a neighborhood J, of y such that h,(t) > f(t) — € for all t € J,. Since
K is compact, we can obtain a finite subcovering of the .J,, which we denote Ji,..., J,, referring
to Y1, ...,Yn. Then, the function we are seeking is obtained by putting g = max(hi,...,hy), where
h; := hy,. Step 2 guarantees that g € B.

Step 4. We want to prove that given a real continuous f on K, and given ¢ > 0, we can find a
function h € B such that

h(z) = f(@)] < e
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for all x € K. Observe that proving this, we would have shown that f is in the uniform closure of
B which, in turn, shows that f € B since B is uniformly closed. In other words, this completes the
proof of the theorem.

For each = € K, let g, denote the function obtained from Step 3. Then, by continuity of g,, we
can find a neighborhood V, such that

(46) 92(t) < [f(t) +¢

for all ¢ € V,. We can then cover K with V, neighborhoods, and extract a finite subcovering
Vi,..., Vin, corresponding to points 1, ..., Z,,. Defining h := min(gy,...,gn) gives the function
with the required properties and, applying Step 2 we see that h € B as required. This completes
the proof. ]

The complex version of the Stone-Weierstrass theorem needs an extra assumption. We need to
require that A be self-adjoint, meaning that whenever f € A, also its complex conjugate f € A,
which is defined by f(x) = f(z).

Theorem 7.35 (Complex Stone-Weierstrass). Suppose A is a self-adjoint algebra of continuous
complex functions over a compact K, such that A separates points on K and does not vanish at
any point of K. Then, the uniform closure B of A consists of all complex continuous functions on
K. Therefore, A is dense in C(K) (complex continuous functions with uniform norm,).

Proof. Let Ar denote the set of all real functions in A. Observe that if f € A, with f = u + v,
we have that f € A by self-adjoint assumption and then u = 1[f + f] € A as well, meaning that
u € Ar. If ©1 # x9 are two points in K, we can find f € A such that f(x1) = 0 and f(z2) =1
(by Theorem 7.33, complex version). Therefore, u(z1) = 0 and u(ze) = 1, which shows that Ag
separates points on K. If x € K we can find g € A such that g(x) # 0. There exists a number
A € C such that A\g(z) > 0 and therefore the function f = Ag, has a real part v such that u(x) > 0,
showing that Ar does not vanish at any point of K. Therefore, Ar satisfies the hypotheses of
Theorem 7.34, which implies that any function which is real and continuous lies in the uniform
closure of Agr, and therefore lies in B. Then, if f is a complex continuous function, we can write
it as f = uw + ‘v where u and v are real and continuous and therefore in B. Therefore, f € B as
well. O

8. LEBESGUE THEORY

In this section we intrduce the theory of integration of Lebesgue. This is not a complete account,
but it introduces some of the main topics and definitions.

Definition 8.1. Let R be a family of sets. Then R is said to be a ring if A, B € R implies that
AUB,A— B € R. Observe that since ANB = A — (A— B), one also finds that AN B € R. A ring
R is said to be a o-ring if | J7~; A, € R whenever Ay, ..., A,,... are elements of R. Once again,
since (o2, An = A1 — U2, (A1 — A,,), we see that (77, A, € R as well in a o-ring.

Definition 8.2. Let R be a o-ring. We say that ¢ : R — [—00, +00] is an additive set function if
$(AUB) = ¢(A)+ ¢(B) whenever AN B = (). We say that ¢ is countably additive if wheneverA4; N
Aj=0foralli,j €N (i #j), we have ¢(U,—1 An) = D oy ¢(Ay).

Remark 8.3. We will make the assumption that ¢ either cotnains +o0o or —oo alone, but not both,
int its image. So, summing ¢(A) and ¢(B) always makes sense.

The following are useful properties.
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Proposition 8.4. Let ¢ be additive on R. Then
1. ¢(0) =0.
(AU UA,) = o(Ar) + -+ ¢(An), whenever A;NAj =0 fori,j=1,...,n,i#j.
. For B C A, and |¢(B)| < +00, we have (A — B) = ¢p(A) — ¢(B).
. p(AUB) +¢(ANB) = ¢(A) + ¢(B). This is usually called “modularity”.
If ¢(A) >0 for all A € R, then ¢p(B) < ¢(BA whenever B C A.

U = W N

Proof. 1. Observe that ¢(0)) = (DUD) = ¢(D) + ¢(B). Subtracting ¢(() from both sides shows that
¢(0) = 0.

2. This is just the consecutive application of the additive property to A; and AsU---U A, then
to Ay and Az3U---U A, and so on.

3. Observe that (A — B) N B = (). Therefore, using the additivity condition we have ¢(A) =
¢((A— B)UB) = ¢(A— B) + ¢(B), which gives the result.

4. We have that A= (ANB)U(A—-B),B=(ANB)U(B—A)and AUB=(ANB)U (A -
B) U (B — A), and all unions are disjoint. Therefore, we have that

P(A)+¢(B) = ¢(ANB)+¢(A-B)+d(ANB)+¢(B - A)
p(AUB) = ¢(ANB)+¢(A—DB)+¢(B—A).

Comparing the two equalities above, we find that (AU B) + (AN B) = ¢(A) + ¢(B).

5. Since (A — B) N B =0, we have ¢(A4) = ¢((A— B) U B) = ¢(A — B) + ¢(B) > ¢(B). O

Theorem 8.5. Suppose R is a o-ring, and let ¢ be countably additive. Let Ay C Ay C --- C A, C
- be a chain of elements in R. Then, we have

o(J 4n) = limg(4,).
n=1

Proof. Set By = Ay, and B,, = A, — A, for all n > 2. Then we have that B; N B; = @ whenever
i # jand A, = By U---U By, so that |Jo-; B, = U~ Ay. By the countably additivity of ¢ we
have that

(An) = ¢(B1U---UBy)
= > ¢(By),
i=1

and also
o(4) = > o(Bn).
n=1
Since > o7, ¢(Bp) =lim > | ¢(B;) = lim ¢(A,,), the proof is complete. O

We now define the Lebesgue measure.

We will say that I C RP is a p-interval, or a box, if I is of the form I = [a1,b1] X - - - [ap, by]. We
also allow the intervals whose product gives I to be open or semi-open, so each a; or b; might be
included or excluded. We allow the case where a; = b; for some i =1, ...,p.

A set A which is the finite union of boxes is called an elementary set. For a box I we define

P

m(I) = []®i—a).

=1
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If A=1I1,U---UI, is an elementary set with I, N I; = () for s # ¢ , we define
m(A) = m(L)+---+m(l,).
Define now € as the class of all elementary sets in RP.

Proposition 8.6. We have the following properties:

1. € is a ring, but it is not a o-ring.

2. If A€ €, then A can be written as a finite union of boxes that are mutually disjoint. So, m
can be defined on the whole E.

3. The definition of m does not depend on the decomposition given in 2. In other words, if A
is written as finite union of disjoint boxes in two different ways, the value of m does not
change.

4. m is additive on E.

Proof. 1. f A= J;_, I and B = J;~, J¢, then AU B = {J;_; I UUy~, Je is the union of n +m
boxes, and therefore is in €. We want to show now that A — B € £ as well. First, note that

A-B = (Ai—-B)U---U(4, —B).

So, we can reduce our proof to showing that A; — B € & for one of the i’s. In other words, without
loss of generality we can take n = 1. Then, observe that A— B =(A—B;)N---N(A— By,). Now,
by direct inspection it is clear that A — By is a finite union of boxes for all k. We just need to show
that the finite intersection of finite union of boxes is again a finite union of boxes. Again without
loss of generality we can assume that m = 2, and we reduce the step to a single intersection, since
one can then itereate the process. This follows now from the distributive property of union and
intersection, along the fact that finite intersection of boxes is again a finite union of boxes. To
show that & is not a o-ring, consider for instance (when p = 1) the family of elements of & given
by A, = [n,n + 1]. Its union is not an elementary set, as it is not bounded, and therefore cannot
be written as a finite union of elementary sets. Similar considerations hold for other values of p.

2. Let A€ &. Say, A= 1, U---UI,, where each [Ij is a box. We consider [y and IoU---UI,. If
LN(IU---UI,) =0, then we consider Iy and I3U---UI,. If the intersection is not empty, as in the
proof of part 1, we can find finitely many boxes Ji, - | Jfl such that Uf;l Ji=1—(Ihu---Ul,),
and Uf;l JiN U?:2 I; = 0. Then, we write replace I; with Ji J{“. We move on to applying
the same procedure to Iy and I3 U---U I,, for which we find a finite set of boxes whose union gives
Iy — (I3U---UI,), and which does not intersect neither I3 U---U I,, nor I;. This process ends in
finitely many steps (n at most), after which we are left with boxes J! which are pairwise disjoint,
and whose union gives A.

3. Let A=0LU---UI, = JiU---UJy, be two different decompositions of A into disjoint
boxes. Then, we want to show that m(ly) + -+ + m(l,) = m(J1) + --- + m(J,). We first show
that if I is a box, and I = K7 U---U K, is a decomposition of I into subboxes that are pairwise
disjoint which are obtained by cutting I horizontally and perpendicularly to the directions of RP
and go from one side of A to the other, then m(I) = m(Ky) + --- + m(K,). We proceed by
induction on the dimension p of RP. For p = 1, this is true because [ is a 1-dimensional interval,
and K1, Ko, -, K, are disjoint intervals which can be rearranged to be consecutive. Then, we
have m(Ky) + -+ m(K,) = by — a1 + by —az + - - - + b, — a, where we must have by = ag, b2 = a3
and so on. Therefore, m(K;) + -+ + m(K,) = b, — a1 = b — a, where I = [a,b]. This completes
the proof of the base case for induction. Suppose now that the the claims holds true for all values
between 1 and some p > 1. We want to show that it also holds for p + 1. Since the cuts that give
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Ki, -+, K, from A are all from side to side (and parallel to the cartesian coordinates of RPT1),
then we can consider each K as consisting of several adjecent boxes which are not stacked on top
of each other along the direction p+ 1. We can therefore apply the inductive hypothesis to each K
to find that m(K,) = m(K}) +---+m(K%). Then, we can again apply the inductive hypothesis on
each slice to show that m(I) = m(K1) + - -+ + m(K,), which completes the proof of the claim. To
finish the proof of 3, now observe that we can always subdivide each Iy,---, I, and Jy,--- ,J;, in
such a way that they consist of a disjoint union of boxes obtained as in the claimed proved above.
The proof of 3 is therefore complete.

4. Tt s enough to show the result for two disjoint boxes, as general elements of € are simply finite
union of them. However, the case of two disjoint boxes just reduces to 3, where A = I; U I, and Iy
and Is are the given disjoint boxes. This completes the proof of 4, and the proposition as well. [

Definition 8.7. A nonnegative additive set function ¢ on € is said to be regular if it has the
following property:

e For any A € € and every € > 0, there exists sets F,G € &, such that F is closed, G is open,
FCACGand

P(G) —e < ¢(A) < o(F) + e

We have already come across an example of regular function on &, as the following proposition
shows.

Proposition 8.8. The set function m is reqular.

Proof. First assume that A is a box. Then, one sees that m(A°) = m(A) = m(A) by definition,
and therefore one can take F = A and G = A°. The general case follows from this special case by
taking A € € and decompose it into finite unions of boxes. Then one can apply the definition of m
as the sum of m evaluated on each box. O

We will show that any regular function g on € can be extended to a countably additive set
function on a o-ring that contains €.

Definition 8.9. Let u be regular and finite on €. Let E C RP, let A = {Ay,...,A,,...} be a
countable covering of E with open elementary sets A,, and let A be the collection of such families
A. Define

p(E) = Agfq?;M(An)-

The function p* is called outer measure of E.

Theorem 8.10. If u is as in Definition 8.9. Then the following two facts hold.
(a) For every A€ &, p*(A) = u(A).
(b) If E =J;2 | By, then p*(E) < p*(Ey). (This is called subadditivity property)

Proof. (a) Let A € €, and € > 0 be given. Since p is regular, we can find an open elementary set
G with A C G and

w(G) < p(A) +e

Since p*(A) is defined as the infimum of a sum over all collections of elementary sets covering A,
we have that p*(A) < u(G), and therefore p*(A) < p(A) + €. Since € is arbitrary, it follows that

p*(A) < p(A).
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Conversely, by definition of p*, for an arbitrary choice of € > 0, we can find a sequence of open
elementary sets A, covering A such that

o0

S u(An) < (A) + e

n=1
Since p is regular, we can find a closed elementary set F' C A such that pu(F) > u(A) —e. Since A
is a finite union of boxes (because A is an elementary set), it follows that A is bounded. Therefore,
F C A is closed and bounded, which means that F' is compact. We can find finitely many of the
opens in the collection {A,} that cover F. If N is the largest integer in the finite subcollection,
then F* C Ay U---U Apn. Then, it follows that

WA) < p(F)+e
<

IA
(=
=
£
+
)

n=1

< ) u(An) te
n=1

< w(A) + 2.

Since € was arbitrary, we find that u(A) < p*(A). The equality is now proved.

(b) Let E = J;”, Ey, and € > 0 be given. Observe that if one of the E, satisfies p*(E,) = oo,
then there is nothing to prove. Therefore, we will assume that p*(E,) < oo for all n € N. By the
definition of u*, we can find for each n € N a sequence of open elementary sets A, such that

> nAw) <t (En) + o
k=1

Then, one has

IA
(]
hE
=
o
=S

1 (E)

IA
™
=
&
+
WE
Sk

n=1 n=1
oo

< ) ulEn) + e
n=1

where in the first inequality we have used the fact that {Ayx}n ken is a countable family of open
elementary sets that covers F, and thefore p*(FE) by definition is less than or equal to the sum of
all u(A,k). Since € was arbitrary, the inequality follows. O

Definition 8.11. For any A, B C RP we define the symmetric difference of A and B as

(47) S(A,B) = (A-B)U(B-A).
We also define
(48) d(A,B) := u*(S(A,B)).

If limd(Ay, A) = 0, we write 4, — A. If A, — A for a sequence of elementary sets A,,, we say
that A is finitely p-measurable. We denote by Mg (p) the class of finitely p-measurable sets. If a set
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X is the union of countably many finitely py-measurable sets, we will say that X is y-measurable.
We denote by M(u) the class of y-measurable sets.

Exercise 8.12. Prove the following proposition.

Proposition 8.13. The following properties of S(A, B) and d(A, B) hold.
e S(A,B)=S(B,A), S(A,A).
e S(A,B) C S(A,C)US(C,B).
° (A1 U As, B1 U Bg) S(Al N As, B1 N Bg), S(Al — Ay, By — BQ) C S(Al, Bl) U S(AQ, Bg)
e d(A, =d(B,A)
o (Al U AQ, By U Bg) d(Al NAs, BN BQ), d(Al — Ay, By — Bg) < d(Al, Bl) + d(Ag, Bg).
e Define the congruence relation A = B when d(A, B) = 0. Prove that on the set of equiva-
lence classes d is a metric.

Proposition 8.14. We have |p*(A) — p*(B)| < d(A, B), whenever one among p*(A) and p*(B)
is finite.

Proof. Suppose that p*(B) is finite, and p*(A) > p*(B). Then, applying Proposition 8.13 we find
d(A,0) < d(A,B)+d(B,0).

Since d(A,0) = p*(A) and d(B,0) = p*(B), we have the result. O

Theorem 8.15. M(u) is a o-ring, and p* is countably additive on M(pu).

Proof. We first show that Mg(u) is a ring. Let A, B € Mp(u). By definition of Mp(u), we can find
two sequences of elementary sets A,,, B, such that A, — A and B,, — B. Using Proposition 8.13,
we find that A, U B, — AU B, since d(A, U By, AUB) < d(A,, A) + d(By,, B) — 0. Therefore,
AUB € Mp(u). Similarly, we also have that A4,, — B, — A — B. These two facts together imply
that Mp(p) is a ring, since from Proposition 8.6 we know that each A4, U B, and A, — B,, is an
elemntary set. Moreover, we have that A, N B, — AN B. Since each A, satisfies u*(4,) =
1(Ay) < 400, using Proposition 8.14 we see that |u*(A,,) — p*(A4)| < d(A,, A) — 0, which implies
that p*(A,) — p*(A), and therefore p*(A) < +oo. Similar results hold for B,, and B, as well as
A,UB, and AUB, A, "B, and AN B.
Applying modularity to each A, and B,,, we find that

w(An) + p(Bn) = p(An U Bp) + p(An N By).

From p*(A4,) — p*(A), p*(B,) — pu*(B), p*(A, U B,) — u*(AU B), and p*(4, N B,) —
w* (AN B), it follows that

WA+ 1" (B) = w(AUB)+ (AN B).

When AN B = (), then p*(A N B) = 0, and we obtain (finite, not countable yet) additivity of u*
on Mp(u).

Let us now consider A € M(u). We want to show that A can be written as the countable union
of sets in Mp(u). In fact, by definition of M(u), we can write A = J,,cn Ay, Where the sets A7,
need not necessarily be pairwise disjoint. We set A; := A/, and A4, := A}, — (AjU---UA _,) for
each n € N. Then, by construction | J,cn An = U,en An = A, and the A, are pairwise disjoint. By
additivity of p* on Mp(u), which we proved at the beginning of the proof, we have that for each
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n € N it holds
W) = (A

= p(A) 4+ pt(An),

which implies p*(A) > > 02, u*(A). Also, applying Theorem 8.10, we obtain that p*(A) <
Yooy 11*(Ap), from which we get the equality p*(A) < > >, p*(Ayn). Suppose that p*(A) < +oo.
Then, the equality p*(A) > > > u*(A) shows that Y >, u*(A,) — 0, as k — co. Then, if we
set B, := A1 U---UA,, we have found that

d(A,By) = w( |J 4n)
n=k+1

= > w4y —0.
n=k+1
It follows that B, — A. Since each B,, € Mp(u) by construction, it follows that A € Mp(u). We
have therefore proved that when A € M(u) and p*(A) < 400, then A € Mp(p).

The last fact allows us to prove that p* is countably additive on M(u). In fact, suppose that
A = U,en An is the disjoint union of elements of Mp(u). If p*(A) is finite, we have already
shown that p*(A) = > 07, u*(An). When p*(A) is infinite, then the equality just follows from
Theorem 8.10.

We want to show now that M(u) is a o-ring. Suppose A, = [Jpen Ank Where A, € Mp(p)
for each n, k € N. Then, the sets A, ; are countably many, and obviously | J,cn An = Un,kEN Ak
This shows that (J,cnAn € M(p) as well. Let now A, B € M(u), and therefore assume that
A =U,enAn and B = |J,,cN Bn- Then, we have

A, NB = U(Antk),
keN
where each A, N By € My (1), which implies that A, N B € M(u). Since p*(A, N B) < p*(4,) <
+o00, it follows that A, N B € Mp(u). Therefore, A, — B € Mp(u), which in turn implies that
A— B € M(u), since A— B = J,,cn(An — B). This completes the proof. O

In what follows, for simplicity, we will write u(A) instead of p*(A) for elements A € M(pu).
Definition 8.16. The function p is called a measure. When p = m, this is called Lebesgue measure.

Remark 8.17. The following facts are useful.

e Any open set A satisfies A € M(u). This is due to the fact that any open set is a countable
union of open boxes, since RP has a countable basis (for the topology) consisting of open
boxes. Also, since M(u) is an algebra, by taking complements we have that any closed set
C satisfies C' € M(u), being the complement of an open set by definition.

o If A € M(p) and € > 0, then there exist a closed set F' and and open set G such that
F Cc AcC G with p(G—A) < e and pu(A — F) < e. To show this fact, first observe that
upon passing to complements, the first fact implies the second. Therefore, we just need
to show that we can find an open set G such that (G — A) < e. However, this holds
because p (actually p* according to the definitions above) is defined through coverings of
open elementary sets.
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o We define the Borel sets as the collection B of all sets obtained by applying countable
operations of unions and intersections, and taking complements, to open sets. One can
show that B is a o-ring, and it is the smallest o-ring which contains all open sets.

o If A € M(u), then there exist Borel sets F' and G such that ¥ C A C G and pu(G — A) =
u(A — F) = 0. This follows directly from the second properties listed in this remark.
Moreover, since A = F U (A — F), it follows that any p-measurable set A is the disjoint
union of a Borel set and a set of measure zero.

e The sets of measure zero form a o-ring.

e For the Lebesgue measure m, any countable set has measure zero.

We now are in the position of introducing measure spaces.

Definition 8.18. Let X be an arbitrary set. Then X is said to be a measure space if there exists
a o-ring M of subsets of X (called the measurable sets) and a nonnegative countably additive set
function p on M (called the measure). If, in addition, X € M, we say that X is a measurable space.

The construction that gave us the Lebesgue measure shows an example of measure space.

Definition 8.19. Let f be a function defined on a measurable space X, with values in the extended
real numbers RU{#00}. Then, the function f is said to be measurable if if the set {x € X | f(z) > a}
is measurable for each a € R.

Theorem 8.20. The following conditions are equivalent.

(i) {z € X | f(x) > a} is measurable for every a € R.
(ii)) {z € X | f(z) > a} is measurable for every a € R.
(iii) {x € X | f(z) < a} is measurable for every a € R.
(iv) {z € X | f(z) < a} is measurable for every a € R.

Proof. We prove (i) = (ii). First, observe that we can write

reX|f@za = NizeX|f@)>a- 1

neN

Since {x € X | f(x) > a} can be written as the countable intersection of measurable sets, it is
measurable, since M is a o-algebra. Next, to show that (ii) implies (iii) we have

freX|fl@)<a) = X—{reX|fz)>a),

showing that {z € X | f(z) < a} is the complement of a measurable set, hence measurable. To
show (iii) == (iv) note that

{reX | flx)<a} = m{x6X|f(m)<a+%}.
neN

Lastly, to show that (iv) implies (i) we observe that
{zeX | flz)>a} = X—-—{zeX]| f(z)<a}l.
This completes the proof. O

Theorem 8.21. If f is measurable, then |f| is measurable too.
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Proof. Suppose that a > 0. By definition of absolute value we have that
{ze X |[f(@)]<a} = {zeX|[flz)<ajn{zeX]|[f(z)>—a},
where both sets in the intersection are measurable because f is measurable. If a < 0 then {z €
X | |f(x)] <a} ={x € X | f(x) < a} =0, which is measurable too. O
Theorem 8.22. Let {f,} be a sequence of measurable functions. Then, the functions
g(x) = sup fu(z),
B(z) = limsup f(a),
are both measurable functions. Similar results hold for inf and liminf.

Proof. We have

{reX|gl@)>a} = |J{zxeX]| fulz)>a}
neN
Since each set in the union is measurable, {z € X | g(z) > a} is measurable and ¢ is measurable.
To prove the result for h, observe that

hx) = inf (o),

where g, () := sup,,>,, fn(r). So, using the fact that sup of measurable functions is measurable
(proved in the first part of the proof), and the analogous version for the infimum, one obtains the
result for h as well. O

The following now follows easily.

Corollary 8.23. If f and g are measurable, then the functions max(f,g) and min(f,g) are mea-
surable. In particular, the functions f* := max(f,0) and f~ := min(f,0) are meaurable. Also, the
limit of a convergent sequence of measurable functions is measurable.

Theorem 8.24. Let f and g be meaasurable real-valued functions defined on the measurable space
X. Let F : R? — R be a continuous function. Define the function h: X — R by

hz) = F(f(x),9(x)).
Then, h is measurable.
Proof. Let G = {(u,v) € R? | F(u,v) > a}. By construction, G = F~1(a,+0c0), and it is therefore
open since F is continuous. Since the topology of R? has a countable basis consisting of rectangles
of type (an, by) X (cn, dy), it follows that G = | J,,en(@n, bn) X (cn, dr), for some choices of a by, c,, dy.
Observe that
[0€X | f(@) € (anb)} = {o€X|f(@)>an}n{zeX | f(x) <ba},

which means that the set {z € X | f(x) € (an,bn)} is measurable because f is measurable.
Similarly, {z € X | g(x) € (cn,dy)} is measurable as well. From

{z € X | F(f(x),9(x)) >a} = {zeX|(f(x)g(x)) € G}
= U{z e X | (f(®),9(x)) € (an,bp) X (cn, dn)}

neN

= UUreX | f@) € (an b))} n{z € X | g(x) € (cn, dn)}),

neN
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it follows that {x € X | F(f(z),g(x)) > a} is measurable, because each set ({z € X | f(z) €
(an,bn)} N{zx € X | g(x) € (¢n,dy)}) is measurable. Since a was arbitrary, we are done. O

Remark 8.25. As an application of Theorem 8.24 we have that the operations + and - are mea-
surable, when composed with measurable functions. More specifically, if f and g are measurable,
the same is true for f + g and fg.

Remark 8.26. Measurability of functions is a concept only depending on the o-ring on X.

We now introduce the fundamental concept of simple function, which is instrumental in defining
integration for abstract measure spaces. Simple functions are a generalization of the notion of step
function.

Definition 8.27. We say that a function s : X — R is a simple function if its range consists of
finitely many points. For a subseet £ C X we define the characteristic function of E, yg as

1l zeF
xe(@) = {0 v ¢ E

We call the set E the support of xg.

Proposition 8.28. Let s be a simple function. Then, s = ;| ¢;Xg, for some sets E;. Moreover,
s is measurable if and only if each E; is measurable.

Proof. 1f s is a simple function, and ¢y, . .., ¢, (pairwise distinct) are the values s attains. We define
the preimages E; = s !({¢;}). Then, s can be written as a linear combination of characteristic
functions xg, as s = Y, ¢ixg,. In fact, note that E; N E; = () for each i # j since ¢; # ¢;j. Then,
for x € X, there is a single E;« such that x € Ej«. Then, xg,. (z) = 1 and xg; = 0 for all j # "
So, > ¢jixk; () = ¢i*Xp,. () = ¢+ = s(z). This shows the first part of the proposition.

For the second part, let £ C X, then

EF a<l1
0 a>1

{reX [xpl)>a = {

Since () is always measurable, we have that xg is a measurable if and only if E is measurable.
Assume now that s = >, ¢;xg,. If E; is measurable for each Ej;, as we have just shown each
XE,; is measurable, and applying Theorem 8.24 we have that s is measurable as well. Conversely,
if s is measurable, without loss of generality we can assume that the numbers ¢; are ordered as
c1 < cg < ---< ¢, We have then notice that

B = {zeX|f(@)>caa}n{zeX| f(z) <cil
where {x € X | f(z) > ¢i—1} =0 when i =1 and {z € X | f(x) < ¢;y1} = 0 when ¢ = n. Then,
each F; is measurable, and the proof is complete. ]

The result that allows us to relate simple functions to more general functions is the following
approximation result.

Theorem 8.29. Let f be a real function on X. Then, there exists a sequence of simple functions
Sp, which converges pointwise to f, i.e. sp(x) — f(x) for all x € X. If f is measurable, then
sp can be chosen to be a sequence of measurable functions. If f > 0, then s, can be chosen to be
monotonically increasing.
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Proof. Since f = fT — f~, where f*, f~ > 0, we can prove the result for nonnegative functions,
because if s, — f1 pointwise and s/, — f~ pointwise, we have that s, — s, — fT — f~
pointwise. Suppose therefore that f > 0. For each n € N, and for ¢ = 1,2,...,n2", define the sets
En,i

F

Zglsf(:v)<f
{z e X | f(x) > n}.

We define the simple function s, as

n2™ .

1—1
Sp = Z on XEn,i+nXFn-
i=1

Let € X and fix € > 0 arbitrary. Then, since f(x) is real, there exists an ng large enough such
that f(z) < ng Take v € N such that v > ng and such that 57 < e. Then, for any n > v, v € E,;

since f(z) < n and it follows that f(z) € 4571, £ for some i*. Therefore

n2" .

s (2) — f(z)] = \ZZ‘IXEM ) + nx, (2) — £(o)|

i*—

= | — f(=)]
-1 4
< | ~on
2n 2n
1
= 27<6

Pointwise convergence follows. When f is measurable, the sets F), are all measurable by definition.
Moreover, notice that

1 1
Eni = {zeX| f(z)> ($)<27}a
and therefore each F), ; is measurable as well. By Proposition 8.28 we have that each s, is measur-
able. Since each s, is monotonic increasing by construction, the proof is complete. O

Remark 8.30. We note that when f is bounded, convergence in Theorem 8.29 is uniform.
We are now in the position to define integration for a measure p.

Definition 8.31. Let s = )" | ¢;xg, be a measurable simple function, and therefore by Proposi-
tion 8.28 we have that each E; is measurable, where each ¢; > 0. Then, for a measurable set £ € M
we define the integral of s as

/sd,u = Zcm(EﬂEi).
E i=1

If f is a measurable nonnegative function, we define its integral over E as

/fdu = Sup/ sdp,
E s E

as s varies among the simple functions s such that 0 < s < f. We call [ g fdp the Lebesgue integral
of f over F with respect to u.
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Remark 8.32. We observe that the Lebesgue integral of a function can be infinite.
Moreover, the definition of integral for a simple function is well posed, as one has

sup/ odyp = Z ci(ENE;),
o JE i=1
where the supremum on the left-hand-side is taken over all step functions ¢ such that 0 < o < s.

Definition 8.33. Let f be measurable, and consider the two nonnegative functions f* and f~.
Then, if at least one of the integrals of f™ and f~ is finite, we set

/E fdu = /E frdu - /E fdp.

When both [, f*du and [, f~dp are finite, the value [, fdpu is finite as well, and we say that f
is Lebesgue integrable, or summable. In this case we write f € Lg(u) or simply f € L(u) if the set
E is understood.

Proposition 8.34. We have the following properties of the Lebesgue integral.

(a) If f is measurable and bounded on E, and p(E) < +oo, then f € L(u).
(b) If a < f(z) <b forallz € E, and u(E) < o0, then

on(E) < [ fdn < bu(E).

(¢) If f,9 € L(p) and f < g, then

/Efdu < /Egdu-

(d) If f,g € L(pn), then cf € L(u) for all c € R. Moreover,

/chdu = c/Efd,u.

(e) If W(E) =0 and f is measurable, then [ fdu = 0.
(f) If fe L(p) on E, and A € M with A C E, then f € L(u) on A.

Exercise 8.35. Prove Proposition 8.34.

Theorem 8.36. Let f be measurable and nonnegative on X. For A € M define
P(A) == / fdp.
A

Then ¢ is countably additive on M. The same holds if f € L(u) on X.

Proof. For f € L(u), writing f = f* — f~, where both f* and f~ are nonnegative, it follows that
¢ is countably additive on M if we prove the result for measurable nonnegative functions. We will
therefore only prove the case where f is measurable and nonnegative.

Suppose A = |J, ey An where A; N A; = () whenever i # j. We need to show that ¢(A) =
Y nen ©(Arn). When f is a characteristic function, since its integral is just defined through s, which
is countably additive, it immediately follows that ¢ is countably additive. When f is simple, the
result also immediately follows because it is a linear combination of characteristic functions.
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Let now f be not simple. Whenever 0 < s < f, we have that

/Asd,u = Ti/nsdu
oo

< ;/Anfdu

= ) 6(An).

neN
Therefore, by definition of Lebesgue integral we have that ¢(A) < > -\ #(A,). The case when
¢(A,) = 400 for one of the sets A, gives both sides of the equality to be infinite, since ¢(A) =
Jafdu> [, fdp = ¢(An). We therefore consider the case where ¢(A,) < +oo for all n € N. Let
€ > 0 be arbitrary. By definition of Lebesgue integral, we can find a simple function s such that

/ sdp > | fdu—e
Ay

Ay

/ sdy > fdu —e.
Ao

Ao
Then, we have

d(A1UAg) = / sdp
A1UA5

/ sdu—l—/ sdp
A Ay

> ¢(Ar) + #(Az) — 2.
Therefore, p(A1UA2) > ¢(A1)+¢P(As2). Inductively, for every n € N we have that ¢p(A,U---UA,)
d(A1) + -+ ¢(Ay). Also, since A D Ay U+---UA,, it follows that ¢(A4) > (A1 U+---UA,)
¢(A1) + -+ ¢(Ay). It now follows that
B(A) > D d(An).

neN

v

IV 1V

The result now follows. O
Corollary 8.37. If A,B e M with B C A and (A — B) =0, then [, fdu= [g fdpu.

Proof. Applying Theorem 8.36 to the case where A1 = A and A, = B, along with Proposition 8.34
(e), the result immediately follows. O

Corollary 8.37 shows that sets of measure zero can be neglected when discussing integration.
Therefore, two functions that are different from each others on a set of measure zero are substantially
the same object when integration is involved. This motivates the following definition.

Definition 8.38. Suppose that the set {x € E | f(z) # g(x)} has measure zero, i.e. pu({x €
E | f(z) # g(x)}) = 0. Then, we write f ~ g. A direct inspection shows that ~ is an equivalence
relation.

From Corollary 8.37 we have that if f ~ g, then [, fdu = [, gdp, when the integrals exist.
More generally, whenever A C E we have [, fdu= [, gdpu.

When a function f satisfies a property for all z € E — A, where A is a set of measure zero, then
we say that f satisfies a property almost everywhere on E. The following is easy to verify.
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Proposition 8.39. Let f € L(u) on E. Then f is finite almost everywhere.

As a consequence of the proposition one may assume that a function is finite, since the set of
values for which this does not happen has zero measure.

Theorem 8.40. Let f € L(u) on E. Then |f| € L(p) as well, and

(49) [ s / fld.

Proof. We decompose E as E = AUB, where A = {xz € E| f(z) > 0} and B = E—A. Theorem 8.36

gives
[t = [ 1idu+ [ 11

- /A frdu+ /B fdu
< +o0

and therefore |f| € L£(u). Moreover, from the fact that f < |f| and —f < |f| we find that
Jg fdp < [ fldp and — [ fdp < [ |f|du. These last two facts together give (49). O

Theorem 8.41. Suppose f is measurable, and |f| < g with g € L(u). Then f € L(u).

Proof. Since |f| < g, we have that both f* < g and f~ < g, from which [ fTdu < [, gdp < +o0
and [ f~du < [ gdp < 4o00. This implies readily that [ fdu < +oo, and f € L(u). O

Theorem 8.42 (Lebesgue Monotone Convergence Theorem). Let E € M, and let f,, be a sequence
of measurable functions such that 0 < fi(z) < fa(z) < -+ < fo(x) < -+ for all x € E. Define f
as the pointwise limit of f,,. Then we have that

/E fodp — /E fdy.

Proof. Observe that the definition of f makes sense since for each = € FE, the sequence f,(x) is
monotonic increasing, and it therefore admits a limit. Moreover, applying Theorem 8.22 we know
that the resulting function is measurable. For any simple function s such that 0 < s < f,, it
follows also that 0 < s < f,41, and therefore [ fudp < [5 fas1dp. Since the sequence of integrals
is monotonic increasing, the sequence admits a limit. We set lim | g fadp = . Since for each n € N
we have that f,, < f, Proposition 8.34 implies that fE fdu > fE fndu for all n € N. It follows that

a < /Efd,u.

We choose ¢ such that 0 < ¢ < 1, and we let s be a simple measurable function such that 0 < s < f.
We define the set

E, = {ze€FE| folr) >cs(z)}.

Since f,, is monotonic, it follows that F; C Ey C --- C B, C ---. Since f is the pointwise limit of

E = UEn

neN

fn, we also have that
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Since F,, C FE, we have for each n € N the inequalities

/E fudi > [ fudp

En

> c/ sds.

Taking limits, we find that lim [, fodp > lime [, sdu. Applying Theorem 8.36 and Theorem 8.5,
hmcfEn sdp = cfE sdp, while by definition we have that lim fE fndu = . Hence we have

a > c/sdu.
E

a > /sd,u,
E

and since [ i fdp is the supremum of all integrals I g Sdu as s varies among the measurable simple
functions such that 0 < s < f, we find that o > || g Jdp, which completes the proof. O

Taking the limit ¢ — 1, we have

Theorem 8.43. Let f = f1 + fa, where f; € L(u) for i =1,2. Then f € L(u), and

(50) /E fdu / frdp + / fadp.

Proof. We first assume that f; > 0, ¢ = 1,2. If both f; and fy are simple functions, then by
definition of integral we immediately find that (50) holds. If f; and fy; are not simple, we can
choose by Theorem 8.29 monotonically increasing sequences of simple functions {s/,} and {s!

converging to f1 and fa, respectively. We set s, = s/, + s/, and applying (50) for simple functions
we find that [, spdp =[5 s, dp+ [ spdp. Taking the limit n — 400, and applying Theorem 8.42,

we find that
/ fdu = /(limsn)d,u
E E "

= lim/ Sndit
n JE

= lim/ s;ld,u—i—lim/ spdp
n JE " JE

_ /(hms )du+/(lim8Z)du

= /f1du+/f2du

Suppose now that f; > 0 and fo < 0. We consider the two disjoint sets
A = {ze€E| f(x)>0,},
B = {ze€FE]| f(z)<0,}.

On A, we have that fi(x) = f(x)— fa(x), where f1(z), f(z) and fao(x) are all nonnegative. Therefore,
we can apply the first part of the proof to obtain

/A frdp = /A fp - /A fad.
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On B, we have — fa(z) = —f(z) + fi(x), where fi(z), —f(x) and fa(z) are all positive. Therefore,
we can again apply the first part of the proof to obtain

—/szdu - —/dew/Afldu.

In both cases we obtain therefore that

/C fdu = /C frdu + /C fad,

where C' = A, B. Adding the two results gives (50). The general case is treated similarly, by
decomposing E into four sets upon which the signs of f; and fy are constant. Then (50) holds on
each of the sets by considering the previously treated cases, and then summing all the equations
the result follows. g

Theorem 8.44. Let E € M. If {f.} is a sequence of measurable nonnegative functions and

f@) = ) fala).

Then, we have

[ i = S intepdn
E n=1

Proof. The sequence of partial sums s, = »_;_; fx is an increasing sequence and f is the pointwise
limit of s, by definition. We can therefore apply Theorem 8.42. O

The following result is usually called Fatou’s Lemma.

Theorem 8.45 (Fatou’s Lemma). Let E € M. Let {f,} be a sequence of nonnegative measurable
functions, and set

f(z) = liminf f,(x).

Then we have

/ fdp < lim inf/ fndp.
E E
Proof. By definition of limit inferior, we have that f(z) = lim g,(z), where g, (z) is defined as

gn(z) = ggg fi(x).

By construction, we have that g,(x) < gnyi1(x), and g,(z) > 0 for all n € N and all z € FE.
Applying Theorem 8.42 we have that

/fd,u = lim/gnd,u.
E E

Since g, (x) < fn(x) holds for all n € N and = € E, we also have that

/gndu < /fndu,
E E

lim/gnd,u = liminf/gndu
E E

< liminf/ frndu.
E

for all n € N, from which
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This completes the proof. O

Theorem 8.46 (Lebesgue Dominated Convergence Theorem). Let E € M, and let {f,} be a
sequence of measurable functions such that f,(x) — f(x). Suppose there exists a function g € L(u)
such that

[fulz) < g(x).

lim /E fodp = /E fdp.

Proof. Applying Theorem 8.41, it follows immediately that f, € L£(u) for all n € N, and also
f € L(p). For each n we also have that f, + ¢ > 0, and applying Fatou’s Lemma (Theorem 8.45)
we obtain that

Then, we have

/(f+g)du < liminf/(fn+g)du.
E E

The previous inequality gives (observe that g does not depend on n)

/ fdp < liminf/ frndp.
E E
Analogously, since g — f, > 0, we have
[ o= pan < vmint [ (o= fu)an

E E
and therefore
— [ fdp < lim inf[—/ fndu).

E

The latter is equivalent to
fdp > lim sup/ fndu.
E E

It therefore follows that limsup [, fodp = liminf [, fodp = lim [ fodp, and

lméhw=:éﬁu

now follows. U
As a particular case we also obtain the following.

Corollary 8.47. Suppose u(E) < +oo, fn is uniformly bounded, and f,(x) — f(x). Then

lim /E fodp = /E fdp.

We will now denote by du the Lebesgue measure on the interval [a,b]. We denote by f; fdu

the Lebesgue integral, and ff fdx the Riemann integral. Our next objective is to compare the two
notions.

Theorem 8.48. The following facts hold.
o Let f € R on [a,b]. Then f € L on [a,b], and

/abfdu = /abfdaz.
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o Let f be a bounded function on [a,b], then f € R if and only if f is continuous almost
everywhere.
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